
Turning PathFinder Upside-Down:
Exploring FPGA Switch-Blocks by Negotiating Switch Presence

Stefan Nikolić and Paolo Ienne

FPL’21, Dresden, 02.09.2021

École Polytechnique Fédérale de Lausanne

How Do We Explore FPGA Architecture?

2-LUT

2-LUT

2-LUT

2-LUT
CLB

3-LUT

3-LUT

3-LUT

3-LUT
CLB

4-LUT

4-LUT

4-LUT

4-LUT
CLB

5-LUT

5-LUT

5-LUT

5-LUT
CLB

6-LUT

6-LUT

6-LUT

6-LUT
CLB

7-LUT

7-LUT

7-LUT

7-LUT
CLB

CAD
(e.g., VPR)

K

2 3 4 5 6 7

AP
D

Ahmed and Rose, 2003

K-LUT

K-LUT

K-LUT

K-LUT
CLB

2

How Do We Explore FPGA Architecture?

2-LUT

2-LUT

2-LUT

2-LUT
CLB

3-LUT

3-LUT

3-LUT

3-LUT
CLB

4-LUT

4-LUT

4-LUT

4-LUT
CLB

5-LUT

5-LUT

5-LUT

5-LUT
CLB

6-LUT

6-LUT

6-LUT

6-LUT
CLB

7-LUT

7-LUT

7-LUT

7-LUT
CLB

CAD
(e.g., VPR)

K

2 3 4 5 6 7

AP
D

Ahmed and Rose, 2003

K-LUT

K-LUT

K-LUT

K-LUT
CLB

2

How Do We Explore FPGA Architecture?

CAD
(e.g., VPR)

K

2 3 4 5 6 7

AP
D

Ahmed and Rose, 2003

K-LUT

K-LUT

K-LUT

K-LUT
CLB

2-LUT

2-LUT

2-LUT

2-LUT
CLB

3-LUT

3-LUT

3-LUT

3-LUT
CLB

4-LUT

4-LUT

4-LUT

4-LUT
CLB

5-LUT

5-LUT

5-LUT

5-LUT
CLB

6-LUT

6-LUT

6-LUT

6-LUT
CLB

7-LUT

7-LUT

7-LUT

7-LUT
CLB

2

How Do We Explore FPGA Architecture?

K

2 3 4 5 6 7

AP
D

Ahmed and Rose, 2003

K-LUT

K-LUT

K-LUT

K-LUT
CLB

2-LUT

2-LUT

2-LUT

2-LUT
CLB

3-LUT

3-LUT

3-LUT

3-LUT
CLB

4-LUT

4-LUT

4-LUT

4-LUT
CLB

5-LUT

5-LUT

5-LUT

5-LUT
CLB

6-LUT

6-LUT

6-LUT

6-LUT
CLB

7-LUT

7-LUT

7-LUT

7-LUT
CLB

CAD
(e.g., VPR)

2

How Do We Explore FPGA Architecture?

K-LUT

K-LUT

K-LUT

K-LUT
CLB

2-LUT

2-LUT

2-LUT

2-LUT
CLB

3-LUT

3-LUT

3-LUT

3-LUT
CLB

4-LUT

4-LUT

4-LUT

4-LUT
CLB

5-LUT

5-LUT

5-LUT

5-LUT
CLB

6-LUT

6-LUT

6-LUT

6-LUT
CLB

7-LUT

7-LUT

7-LUT

7-LUT
CLB

CAD
(e.g., VPR)

K

2 3 4 5 6 7

AP
D

Ahmed and Rose, 2003

2

How Do We Explore FPGA Architecture?

Did we explore enough?

No 1-LUT

Local minimum

(K-1)-LUT

(K-1)-LUT

K-1

K-LUT
K

2 3 4 5 6 7

AP
D

Ahmed and Rose, 2003

Similar approach applicable to cluster size, channel composition, etc.

3

How Do We Explore FPGA Architecture?

Did we explore enough?

Similar approach applicable to cluster size, channel composition, etc.

3

How Do We Explore FPGA Architecture?

Did we explore enough?

Similar approach applicable to cluster size, channel composition, etc.

3

How Do We Explore FPGA Architecture?

What about Switch-Block Patterns?

(apologies for a bit of an exaggeration)

4

How Do We Explore FPGA Architecture?

What about Switch-Block Patterns?

(apologies for a bit of an exaggeration)

19
90

Some very smart people at UoT
get an idea

Rose and Brown'91

19
96

Some very smart people in
Texas and Hong Kong

 get an idea

UNIVERSAL

19
97

A very smart person
at UoT

gets an idea

WILTON

19
8*

A very smart engineer at Xilinx
gets an idea

SUBSET

4

How Do We Explore FPGA Architecture?

What about Switch-Block Patterns?

(apologies for a bit of an exaggeration)

4

How Do We Explore FPGA Architecture?

What about Switch-Block Patterns?

(apologies for a bit of an exaggeration)

4

How Do We Explore FPGA Architecture?

What about Switch-Block Patterns? (apologies for a bit of an exaggeration)

4

Meanwhile in Industry...

Different
 Difference increasing
(Technology scaling) 5

How Do We Explore FPGA Architecture?

Can’t we automate SB-pattern exploration too?

CAD
(e.g., VPR)

CLB CLB

CLB CLB

SB
CLB CLB

CLB CLB

SB1

CLB CLB

CLB CLB

SB2

CLB CLB

CLB CLB

SB3

CLB CLB

CLB CLB

SBN

1
2

N

3

Sure!

6

How Do We Explore FPGA Architecture?

Can’t we automate SB-pattern exploration too?

CAD
(e.g., VPR)

CLB CLB

CLB CLB

SB
CLB CLB

CLB CLB

SB1

CLB CLB

CLB CLB

SB2

CLB CLB

CLB CLB

SB3

CLB CLB

CLB CLB

SBN

1
2

N

3

Sure!
6

How Do We Explore FPGA Architecture?

How big is N?

W = 10

30∑
k=10

(
30
k

)
· 10! ·

{
k
10

}
∼ 1031

7

How Do We Explore FPGA Architecture?

How big is N?

W = 10

30∑
k=10

(
30
k

)
· 10! ·

{
k
10

}
∼ 1031

7

How Do We Explore FPGA Architecture?

How big is N?

W = 10

30∑
k=10

(
30
k

)
· 10! ·

{
k
10

}
∼ 1031

7

How Do We Explore FPGA Architecture?

Can’t we automate SB-pattern exploration too?

CAD
(e.g., VPR)

CLB CLB

CLB CLB

SB
CLB CLB

CLB CLB

SB1

CLB CLB

CLB CLB

SB2

CLB CLB

CLB CLB

SB3

CLB CLB

CLB CLB

SBN

1
2

N

3

Sure!
8

How Do We Explore FPGA Architecture?

Can’t we automate SB-pattern exploration too?

CAD
(e.g., VPR)

CLB CLB

CLB CLB

SB
CLB CLB

CLB CLB

SB1

CLB CLB

CLB CLB

SB2

CLB CLB

CLB CLB

SB3

CLB CLB

CLB CLB

SBN

1
2

N

3

Surely not like this!
8

Automated Switch-Pattern
Exploration

An Intuitive Solution: Iterative Improvement

Search engine
(e.g., simulated annealing)

Router
(e.g., VPR)

SB-pattern

score

[1] M. Lin, J. Wawrzynek, and A. El Gamal, “Exploring FPGA routing
architecture stochastically”, TCAD’10

9

Using the router as a black box

to evaluate enumerated solutions

is inefficient

This inefficient...

A Little Analogy

You enter a restaurant and order a soup.

Waiter: “How do you find the taste of the soup sir, on scale 0–9?”
You: “2”

The waiter goes away with your soup, adds some salt and comes back.

Waiter: “Please try it now sir.”
You: “4”

The waiter disappears with the soup again and adds some pepper.

Waiter: “How about now sir?”
You: “3”

The waiter disappears yet again, but this time you leave the table too.

12

A Little Analogy

You enter a restaurant and order a soup.

Waiter: “How do you find the taste of the soup sir, on scale 0–9?”

You: “2”

The waiter goes away with your soup, adds some salt and comes back.

Waiter: “Please try it now sir.”
You: “4”

The waiter disappears with the soup again and adds some pepper.

Waiter: “How about now sir?”
You: “3”

The waiter disappears yet again, but this time you leave the table too.

12

A Little Analogy

You enter a restaurant and order a soup.

Waiter: “How do you find the taste of the soup sir, on scale 0–9?”
You: “2”

The waiter goes away with your soup, adds some salt and comes back.

Waiter: “Please try it now sir.”
You: “4”

The waiter disappears with the soup again and adds some pepper.

Waiter: “How about now sir?”
You: “3”

The waiter disappears yet again, but this time you leave the table too.

12

A Little Analogy

You enter a restaurant and order a soup.

Waiter: “How do you find the taste of the soup sir, on scale 0–9?”
You: “2”

The waiter goes away with your soup, adds some salt and comes back.

Waiter: “Please try it now sir.”
You: “4”

The waiter disappears with the soup again and adds some pepper.

Waiter: “How about now sir?”
You: “3”

The waiter disappears yet again, but this time you leave the table too.

12

A Little Analogy

You enter a restaurant and order a soup.

Waiter: “How do you find the taste of the soup sir, on scale 0–9?”
You: “2”

The waiter goes away with your soup, adds some salt and comes back.

Waiter: “Please try it now sir.”

You: “4”

The waiter disappears with the soup again and adds some pepper.

Waiter: “How about now sir?”
You: “3”

The waiter disappears yet again, but this time you leave the table too.

12

A Little Analogy

You enter a restaurant and order a soup.

Waiter: “How do you find the taste of the soup sir, on scale 0–9?”
You: “2”

The waiter goes away with your soup, adds some salt and comes back.

Waiter: “Please try it now sir.”
You: “4”

The waiter disappears with the soup again and adds some pepper.

Waiter: “How about now sir?”
You: “3”

The waiter disappears yet again, but this time you leave the table too.

12

A Little Analogy

You enter a restaurant and order a soup.

Waiter: “How do you find the taste of the soup sir, on scale 0–9?”
You: “2”

The waiter goes away with your soup, adds some salt and comes back.

Waiter: “Please try it now sir.”
You: “4”

The waiter disappears with the soup again and adds some pepper.

Waiter: “How about now sir?”
You: “3”

The waiter disappears yet again, but this time you leave the table too.

12

A Little Analogy

You enter a restaurant and order a soup.

Waiter: “How do you find the taste of the soup sir, on scale 0–9?”
You: “2”

The waiter goes away with your soup, adds some salt and comes back.

Waiter: “Please try it now sir.”
You: “4”

The waiter disappears with the soup again and adds some pepper.

Waiter: “How about now sir?”

You: “3”

The waiter disappears yet again, but this time you leave the table too.

12

A Little Analogy

You enter a restaurant and order a soup.

Waiter: “How do you find the taste of the soup sir, on scale 0–9?”
You: “2”

The waiter goes away with your soup, adds some salt and comes back.

Waiter: “Please try it now sir.”
You: “4”

The waiter disappears with the soup again and adds some pepper.

Waiter: “How about now sir?”
You: “3”

The waiter disappears yet again, but this time you leave the table too.

12

A Little Analogy

You enter a restaurant and order a soup.

Waiter: “How do you find the taste of the soup sir, on scale 0–9?”
You: “2”

The waiter goes away with your soup, adds some salt and comes back.

Waiter: “Please try it now sir.”
You: “4”

The waiter disappears with the soup again and adds some pepper.

Waiter: “How about now sir?”
You: “3”

The waiter disappears yet again, but this time you leave the table too.

12

A Little Analogy

Search engine
(e.g., simulated annealing)

Router
(e.g., VPR)

SB-pattern

score

Waiter YouSoup

13

A Little Analogy

Now something that we are a bit more accustomed to:

You enter a restaurant and order a soup.

Waiter: “Here you go sir, and here are all the spices we have available, in
case you miss something.”

You try the soup and add a bit of each spice that the waiter gave you,
according to your taste and habit.

14

A Little Analogy

Now something that we are a bit more accustomed to:

You enter a restaurant and order a soup.

Waiter: “Here you go sir, and here are all the spices we have available, in
case you miss something.”

You try the soup and add a bit of each spice that the waiter gave you,
according to your taste and habit.

14

A Little Analogy

Now something that we are a bit more accustomed to:

You enter a restaurant and order a soup.

Waiter: “Here you go sir, and here are all the spices we have available, in
case you miss something.”

You try the soup and add a bit of each spice that the waiter gave you,
according to your taste and habit.

14

Can the router
spice up its own soup?

Can the router
design the switch-pattern?

A Quick Recap on FPGA Routers

Representing an FPGA as a Graph

1

2

3

cluster outputs
cluster inputs

cluster outputs
cluster inputs

wires

B

A

CLB outin CLB outin

CLB outin CLB outin CLB outin

CLB outin

3

1

2

out
A

B

Each node has a cost

17

Very Simplified Algorithm

repeat
foreach connection in the circuit do

route using shortest path in the RR-graph;

update node costs;

end
until overused nodes exist;

18

Very Simplified Algorithm

repeat
foreach connection in the circuit do

route using shortest path in the RR-graph;

update node costs;

end
until overused nodes exist;

18

Very Simplified Algorithm

1

2

3

cluster outputs
cluster inputs

cluster outputs
cluster inputs

wires

B

A

CLB outin CLB outin

CLB outin CLB outin CLB outin

CLB outin

3

1

2

out
A

B

Each node has a cost

19

Very Simplified Algorithm

1

2

3

cluster outputs
cluster inputs

cluster outputs
cluster inputs

wires

B

A

CLB outin CLB outin

CLB outin CLB outin CLB outin

CLB outin

3

1

2

out
A

B

Each node has a cost

19

Very Simplified Algorithm

repeat
foreach connection in the circuit do

route using shortest path in the RR-graph;
(different signals can overlap)
update node costs;

end
until overused nodes exist;

20

Very Simplified Algorithm

1

2

3

cluster outputs
cluster inputs

cluster outputs
cluster inputs

wires

B

A

CLB outin CLB outin

CLB outin CLB outin CLB outin

CLB outin

3

1

2

out
A

B

Each node has a cost

21

Very Simplified Algorithm

1

2

3

cluster outputs
cluster inputs

cluster outputs
cluster inputs

wires

B

A

CLB outin CLB outin

CLB outin CLB outin CLB outin

CLB outin

3

1

2

out
A

B

Each node has a cost

21

Very Simplified Algorithm

repeat
foreach connection in the circuit do

route using shortest path in the RR-graph;
(different signals can overlap)
update node costs;

end
update node costs;

until overused nodes exist;

22

Very Simplified Algorithm

1

2

3

cluster outputs
cluster inputs

cluster outputs
cluster inputs

wires

B

A

CLB outin CLB outin

CLB outin CLB outin CLB outin

CLB outin

3

1

2

out
A

B

Each node has a cost

23

Very Simplified Algorithm

1

2

3

cluster outputs
cluster inputs

cluster outputs
cluster inputs

wires

B

A

CLB outin CLB outin

CLB outin CLB outin CLB outin

CLB outin

3

1

2

out
A

B

Each node has a cost

Cost of overused
nodes increases

23

Very Simplified Algorithm

repeat
foreach connection in the circuit do

route using shortest path in the RR-graph;
(different signals can overlap)
update node costs;

end
update node costs;
throw away all routing (rip-up);

until overused nodes exist;

24

Very Simplified Algorithm

Signals negotiate which one will
give up its desired nodes

1

2

3

cluster outputs
cluster inputs

cluster outputs
cluster inputs

wires

B

A

CLB outin CLB outin

CLB outin CLB outin CLB outin

CLB outin

3

1

2

out
A

B

Each node has a cost

25

Very Simplified Algorithm

Signals negotiate which one will
give up its desired nodes

1

2

3

cluster outputs
cluster inputs

cluster outputs
cluster inputs

wires

B

A

CLB outin CLB outin

CLB outin CLB outin CLB outin

CLB outin

3

1

2

out
A

B

Each node has a cost

25

Very Simplified Algorithm

Signals negotiate which one will
give up its desired nodes

1

2

3

cluster outputs
cluster inputs

cluster outputs
cluster inputs

wires

B

A

CLB outin CLB outin

CLB outin CLB outin CLB outin

CLB outin

3

1

2

out
A

B

Each node has a cost

25

Very Simplified Algorithm

Signals negotiate which one will
give up its desired nodes

1

2

3

cluster outputs
cluster inputs

cluster outputs
cluster inputs

wires

B

A

CLB outin CLB outin

CLB outin CLB outin CLB outin

CLB outin

3

1

2

out
A

B

Each node has a cost

25

Negotiating Switch Presence

Letting the Router Design the SB-Pattern

H1Ra
H1RbH2RaH4RaH6Ra

H1Ra
H1Rb H2Ra H4Ra H6Ra

H1La H1La
H1LbH2LaH4LaH6La

H1Lb H2La H4La H6La

V1D
a

V1D
b

V1D
a

V1D
b

V1
U

a
V1

U
b

V1
U

a
V1

U
b

V4D
a

V4D
aV4

U
a

V4
U

a

H
1L

a
H

1L
b

H
2L

a
H

4L
a

H
6L

a

H
1R

a

H
1R

b
H

2R
a

H
4R

a
H

6R
a

V1
U

a
V1

U
b

V1
D

a
V1

D
b

V4
D

a

V4
U

a

H
1L

a
H

1L
b

H
2L

a
H

4L
a

H
6L

a

H
1R

a

H
1R

b
H

2R
a

H
4R

a
H

6R
a

V1
U

a
V1

U
b

V1
D

a
V1

D
b

V4
D

a

V4
U

a

All wires are given

26

Letting the Router Design the SB-Pattern

H1Ra
H1RbH2RaH4RaH6Ra

H1Ra
H1Rb H2Ra H4Ra H6Ra

H1La H1La
H1LbH2LaH4LaH6La

H1Lb H2La H4La H6La

V1D
a

V1D
b

V1D
a

V1D
b

V1
U

a
V1

U
b

V1
U

a
V1

U
b

V4D
a

V4D
aV4

U
a

V4
U

a

H
1L

a
H

1L
b

H
2L

a
H

4L
a

H
6L

a

H
1R

a

H
1R

b
H

2R
a

H
4R

a
H

6R
a

V1
U

a
V1

U
b

V1
D

a
V1

D
b

V4
D

a

V4
U

a

H
1L

a
H

1L
b

H
2L

a
H

4L
a

H
6L

a

H
1R

a

H
1R

b
H

2R
a

H
4R

a
H

6R
a

V1
U

a
V1

U
b

V1
D

a
V1

D
b

V4
D

a

V4
U

a

All wires are given

The router sees all
 the possible switches

26

Letting the Router Design the SB-Pattern

H
1L

a
H

1L
b

H
2L

a
H

4L
a

H
6L

a

H
1R

a

H
1R

b
H

2R
a

H
4R

a
H

6R
a

V1
U

a
V1

U
b

V1
D

a
V1

D
b

V4
D

a

V4
U

a

H
1L

a
H

1L
b

H
2L

a
H

4L
a

H
6L

a

H
1R

a

H
1R

b
H

2R
a

H
4R

a
H

6R
a

V1
U

a
V1

U
b

V1
D

a
V1

D
b

V4
D

a

V4
U

a

Presented to the router

H
1L

a
H

1L
b

H
2L

a
H

4L
a

H
6L

a

H
1R

a

H
1R

b
H

2R
a

H
4R

a
H

6R
a

V1
U

a
V1

U
b

V1
D

a
V1

D
b

V4
D

a

V4
U

a

H
1L

a
H

1L
b

H
2L

a
H

4L
a

H
6L

a

H
1R

a

H
1R

b
H

2R
a

H
4R

a
H

6R
a

V1
U

a
V1

U
b

V1
D

a
V1

D
b

V4
D

a

V4
U

a

?

To be fabricated

Use the router’s decisions to select switches for fabrication

27

A Simple Greedy Solution

Usage(e) = # SB instances (tiles) in which a switch type e is used.

Usage() = 3

Usage() = 5

(0, 0) (1, 0) (2, 0) (3, 0)

(0, 1) (1, 1) (2, 1) (3, 1)

switch type A

switch type A

switch type B

switch type B

28

A Simple Greedy Solution

Usage(e) = # SB instances (tiles) in which a switch type e is used.

switch type A

switch type A

switch type B

switch type B
Usage(B) = 3

Usage(A) = 5

(0, 0) (1, 0) (2, 0) (3, 0)

(0, 1) (1, 1) (2, 1) (3, 1)

28

A Simple Greedy Solution

Usage(e) = # SB instances (tiles) in which a switch type e is used.

1. Set the cost of all switch types not yet taken to some small cost ϵ.

2. Route all circuits.
3. Find the maximum Usage of all switch types, Usagemax.
4. Take all switch types with Usage > Usagemax/θ, θ > 1.
5. Set the cost of all taken switch types to 0.
6. If there are newly taken switch types, go to step 2.

29

A Simple Greedy Solution

Usage(e) = # SB instances (tiles) in which a switch type e is used.

1. Set the cost of all switch types not yet taken to some small cost ϵ.
2. Route all circuits.

3. Find the maximum Usage of all switch types, Usagemax.
4. Take all switch types with Usage > Usagemax/θ, θ > 1.
5. Set the cost of all taken switch types to 0.
6. If there are newly taken switch types, go to step 2.

29

A Simple Greedy Solution

Usage(e) = # SB instances (tiles) in which a switch type e is used.

1. Set the cost of all switch types not yet taken to some small cost ϵ.
2. Route all circuits.
3. Find the maximum Usage of all switch types, Usagemax.

4. Take all switch types with Usage > Usagemax/θ, θ > 1.
5. Set the cost of all taken switch types to 0.
6. If there are newly taken switch types, go to step 2.

29

A Simple Greedy Solution

Usage(e) = # SB instances (tiles) in which a switch type e is used.

1. Set the cost of all switch types not yet taken to some small cost ϵ.
2. Route all circuits.
3. Find the maximum Usage of all switch types, Usagemax.
4. Take all switch types with Usage > Usagemax/θ, θ > 1.

5. Set the cost of all taken switch types to 0.
6. If there are newly taken switch types, go to step 2.

29

A Simple Greedy Solution

Usage(e) = # SB instances (tiles) in which a switch type e is used.

1. Set the cost of all switch types not yet taken to some small cost ϵ.
2. Route all circuits.
3. Find the maximum Usage of all switch types, Usagemax.
4. Take all switch types with Usage > Usagemax/θ, θ > 1.
5. Set the cost of all taken switch types to 0.

6. If there are newly taken switch types, go to step 2.

29

A Simple Greedy Solution

Usage(e) = # SB instances (tiles) in which a switch type e is used.

1. Set the cost of all switch types not yet taken to some small cost ϵ.
2. Route all circuits.
3. Find the maximum Usage of all switch types, Usagemax.
4. Take all switch types with Usage > Usagemax/θ, θ > 1.
5. Set the cost of all taken switch types to 0.
6. If there are newly taken switch types, go to step 2.

29

Letting the Router Design the SB-Pattern

H
1L

a
H

1L
b

H
2L

a
H

4L
a

H
6L

a

H
1R

a

H
1R

b
H

2R
a

H
4R

a
H

6R
a

V1
U

a
V1

U
b

V1
D

a
V1

D
b

V4
D

a

V4
U

a

H
1L

a
H

1L
b

H
2L

a
H

4L
a

H
6L

a

H
1R

a

H
1R

b
H

2R
a

H
4R

a
H

6R
a

V1
U

a
V1

U
b

V1
D

a
V1

D
b

V4
D

a

V4
U

a

Presented to the router

H
1L

a
H

1L
b

H
2L

a
H

4L
a

H
6L

a

H
1R

a

H
1R

b
H

2R
a

H
4R

a
H

6R
a

V1
U

a
V1

U
b

V1
D

a
V1

D
b

V4
D

a

V4
U

a

H
1L

a
H

1L
b

H
2L

a
H

4L
a

H
6L

a

H
1R

a

H
1R

b
H

2R
a

H
4R

a
H

6R
a

V1
U

a
V1

U
b

V1
D

a
V1

D
b

V4
D

a

V4
U

a

To be fabricated

30

Letting the Router Design the SB-Pattern

H
1L

a
H

1L
b

H
2L

a
H

4L
a

H
6L

a

H
1R

a

H
1R

b
H

2R
a

H
4R

a
H

6R
a

V1
U

a
V1

U
b

V1
D

a
V1

D
b

V4
D

a

V4
U

a

H
1L

a
H

1L
b

H
2L

a
H

4L
a

H
6L

a

H
1R

a

H
1R

b
H

2R
a

H
4R

a
H

6R
a

V1
U

a
V1

U
b

V1
D

a
V1

D
b

V4
D

a

V4
U

a

Presented to the router

H
1L

a
H

1L
b

H
2L

a
H

4L
a

H
6L

a

H
1R

a

H
1R

b
H

2R
a

H
4R

a
H

6R
a

V1
U

a
V1

U
b

V1
D

a
V1

D
b

V4
D

a

V4
U

a

H
1L

a
H

1L
b

H
2L

a
H

4L
a

H
6L

a

H
1R

a

H
1R

b
H

2R
a

H
4R

a
H

6R
a

V1
U

a
V1

U
b

V1
D

a
V1

D
b

V4
D

a

V4
U

a

To be fabricated

30

Letting the Router Design the SB-Pattern

H
1L

a
H

1L
b

H
2L

a
H

4L
a

H
6L

a

H
1R

a

H
1R

b
H

2R
a

H
4R

a
H

6R
a

V1
U

a
V1

U
b

V1
D

a
V1

D
b

V4
D

a

V4
U

a

H
1L

a
H

1L
b

H
2L

a
H

4L
a

H
6L

a

H
1R

a

H
1R

b
H

2R
a

H
4R

a
H

6R
a

V1
U

a
V1

U
b

V1
D

a
V1

D
b

V4
D

a

V4
U

a

Presented to the router

H
1L

a
H

1L
b

H
2L

a
H

4L
a

H
6L

a

H
1R

a

H
1R

b
H

2R
a

H
4R

a
H

6R
a

V1
U

a
V1

U
b

V1
D

a
V1

D
b

V4
D

a

V4
U

a

H
1L

a
H

1L
b

H
2L

a
H

4L
a

H
6L

a

H
1R

a

H
1R

b
H

2R
a

H
4R

a
H

6R
a

V1
U

a
V1

U
b

V1
D

a
V1

D
b

V4
D

a

V4
U

a

To be fabricated

30

Letting the Router Design the SB-Pattern

H
1L

a
H

1L
b

H
2L

a
H

4L
a

H
6L

a

H
1R

a

H
1R

b
H

2R
a

H
4R

a
H

6R
a

V1
U

a
V1

U
b

V1
D

a
V1

D
b

V4
D

a

V4
U

a

H
1L

a
H

1L
b

H
2L

a
H

4L
a

H
6L

a

H
1R

a

H
1R

b
H

2R
a

H
4R

a
H

6R
a

V1
U

a
V1

U
b

V1
D

a
V1

D
b

V4
D

a

V4
U

a

Presented to the router

H
1L

a
H

1L
b

H
2L

a
H

4L
a

H
6L

a

H
1R

a

H
1R

b
H

2R
a

H
4R

a
H

6R
a

V1
U

a
V1

U
b

V1
D

a
V1

D
b

V4
D

a

V4
U

a

H
1L

a
H

1L
b

H
2L

a
H

4L
a

H
6L

a

H
1R

a

H
1R

b
H

2R
a

H
4R

a
H

6R
a

V1
U

a
V1

U
b

V1
D

a
V1

D
b

V4
D

a

V4
U

a

To be fabricated

30

Letting the Router Design the SB-Pattern

H
1L

a
H

1L
b

H
2L

a
H

4L
a

H
6L

a

H
1R

a

H
1R

b
H

2R
a

H
4R

a
H

6R
a

V1
U

a
V1

U
b

V1
D

a
V1

D
b

V4
D

a

V4
U

a

H
1L

a
H

1L
b

H
2L

a
H

4L
a

H
6L

a

H
1R

a

H
1R

b
H

2R
a

H
4R

a
H

6R
a

V1
U

a
V1

U
b

V1
D

a
V1

D
b

V4
D

a

V4
U

a

Presented to the router

H
1L

a
H

1L
b

H
2L

a
H

4L
a

H
6L

a

H
1R

a

H
1R

b
H

2R
a

H
4R

a
H

6R
a

V1
U

a
V1

U
b

V1
D

a
V1

D
b

V4
D

a

V4
U

a

H
1L

a
H

1L
b

H
2L

a
H

4L
a

H
6L

a

H
1R

a

H
1R

b
H

2R
a

H
4R

a
H

6R
a

V1
U

a
V1

U
b

V1
D

a
V1

D
b

V4
D

a

V4
U

a

To be fabricated

30

A Simple Greedy Solution: Failure

signal 2signal 1 signal 3

31

A Simple Greedy Solution: Failure

signal 2signal 1 signal 3

31

A Simple Greedy Solution: Failure

signal 2signal 1 signal 3

31

A Simple Greedy Solution: Failure

signal 2signal 1 signal 3

31

A Simple Greedy Solution: Failure

signal 2signal 1 signal 3

31

A Simple Greedy Solution: Failure

signal 2signal 1 signal 3

31

A Simple Greedy Solution: Failure

1. Set the cost of all switch types not yet taken to some small cost ϵ.
2. Route all circuits.
3. Find the maximum Usage of all switch types, Usagemax.
4. Take all switch types with Usage > Usagemax/θ, θ > 1.
5. Set the cost of all taken switch types to 0.
6. If there are newly taken switch types, go to step 2.

Must take all three switch types from the example

32

A Simple Greedy Solution: Failure

1. Set the cost of all switch types not yet taken to some small cost ϵ.
2. Route all circuits.
3. Find the maximum Usage of all switch types, Usagemax.
4. Take all switch types with Usage > Usagemax/θ, θ > 1.
5. Set the cost of all taken switch types to 0.
6. If there are newly taken switch types, go to step 2.

Must take all three switch types from the example

32

Avalanche Costs (Key Idea)

Avalanche Costs: Rationale

repeat
foreach connection in the circuit do

route using shortest path in the RR-graph;
update node costs;

end
update node costs;
throw away all routing (rip-up);

until overused nodes exist;

33

Avalanche Costs: Rationale

What if switch costs were inversely related to Usage?
(Usage is common to all instances of the same switch type)

34

Avalanche Costs: Rationale

What if switch costs were inversely related to Usage?
(Usage is common to all instances of the same switch type)

signal 1 signal 2 signal 3

34

Avalanche Costs: Rationale

What if switch costs were inversely related to Usage?
(Usage is common to all instances of the same switch type)

signal 1 signal 2 signal 3

34

Avalanche Costs: Rationale

What if switch costs were inversely related to Usage?
(Usage is common to all instances of the same switch type)

signal 1 signal 2 signal 3

34

Avalanche Costs: Rationale

What if switch costs were inversely related to Usage?
(Usage is common to all instances of the same switch type)

signal 1 signal 2 signal 3

34

Avalanche Costs: Rationale

What if switch costs were inversely related to Usage?
(Usage is common to all instances of the same switch type)

signal 1 signal 2 signal 3

34

Avalanche Costs: Rationale

What if switch costs were inversely related to Usage?
(Usage is common to all instances of the same switch type)

signal 1 signal 2 signal 3

34

Avalanche Costs: Rationale

What if switch costs were inversely related to Usage?
(Usage is common to all instances of the same switch type)

signal 1 signal 2 signal 3

34

Avalanche Costs: Rationale

repeat
foreach connection in the circuit do

route using shortest path in the RR-graph;
update node costs;

end
update node costs;
throw away all routing (rip-up);

until overused nodes exist;

After rip-up, more signals move to switches with higher Usage,
creating an avalanche effect

35

Avalanche Costs: Similarity with Congestion Negotiation

Signals negotiate which one will
give up its desired nodes

1

2

3

cluster outputs
cluster inputs

cluster outputs
cluster inputs

wires

B

A

CLB outin CLB outin

CLB outin CLB outin CLB outin

CLB outin

3

1

2

out
A

B

Each node has a cost

36

Avalanche Costs: Similarity with Congestion Negotiation

Signals negotiate which one will
give up its desired nodes

Circuit Routing with
Pathfinder

SB-Pattern Design with
 Avalanche Costs

36

Avalanche Costs: Similarity with Congestion Negotiation

Signals negotiate which one will
give up its desired nodes

Circuit Routing with
Pathfinder

SB-Pattern Design with
 Avalanche Costs

Spreads the routes over more wire instances

36

Avalanche Costs: Similarity with Congestion Negotiation

Signals negotiate which one will
give up its desired nodes

Circuit Routing with
Pathfinder

SB-Pattern Design with
 Avalanche Costs

Spreads the routes over more wire instances

congestion-free routing

36

Avalanche Costs: Similarity with Congestion Negotiation

Signals negotiate which one will
give up its desired nodes

Circuit Routing with
Pathfinder

SB-Pattern Design with
 Avalanche Costs

Spreads the routes over more wire instances

congestion-free routing

Concentrates the routes on fewer switch types

36

Avalanche Costs: Similarity with Congestion Negotiation

Signals negotiate which one will
give up its desired nodes

Circuit Routing with
Pathfinder

SB-Pattern Design with
 Avalanche Costs

Spreads the routes over more wire instances

congestion-free routing

Concentrates the routes on fewer switch types

optimizes the switch-pattern

36

Avalanche Costs: Effects

switch type

U
sa

ge
[#

sw
it

ch
-b

lo
ck

s]

37

Avalanche Costs: Effects

switch type

U
sa

ge
[#

sw
it

ch
-b

lo
ck

s]

37

Avalanche Costs: Effects

switch type

U
sa

ge
[#

sw
it

ch
-b

lo
ck

s] Few switch types with large usage

37

Avalanche Costs: Effects

switch type

U
sa

ge
[#

sw
it

ch
-b

lo
ck

s] Few switch types with large usage

Many switch types with moderate and small usage

37

The Complete Algorithm

Very similar to Simple Greedy:

1. Set the cost of all switch types not yet taken to some small cost ϵ.

2. Route all circuits.
3. Find the maximum Usage of all switch types, Usagemax.
4. Take all switch types with Usage > Usagemax/θ, θ > 1.
5. Set the cost of all taken switch types to 0.
6. If there are newly taken switch types, go to step 2.

More details in the paper

38

The Complete Algorithm

Very similar to Simple Greedy:

1. Set the cost of all switch types not yet taken to some small cost ϵ.
their starting avalanche cost.

2. Route all circuits.
3. Find the maximum Usage of all switch types, Usagemax.
4. Take all switch types with Usage > Usagemax/θ, θ > 1.
5. Set the cost of all taken switch types to 0.
6. If there are newly taken switch types, go to step 2.

More details in the paper

38

The Complete Algorithm

Very similar to Simple Greedy:

1. Set the cost of all switch types not yet taken to some small cost ϵ.
their starting avalanche cost.

2. Route all circuits updating avalanche costs.
3. Find the maximum Usage of all switch types, Usagemax.
4. Take all switch types with Usage > Usagemax/θ, θ > 1.
5. Set the cost of all taken switch types to 0.
6. If there are newly taken switch types, go to step 2.

More details in the paper

38

The Complete Algorithm

Very similar to Simple Greedy:

1. Set the cost of all switch types not yet taken to some small cost ϵ.
their starting avalanche cost.

2. Route all circuits updating avalanche costs.
3. Find the maximum Usage of all switch types, Usagemax.
4. Take all switch types with Usage > Usagemax/θ, θ > 1.
5. Set the cost of all taken switch types to 0.
6. If there are newly taken switch types, go to step 2.

More details in the paper

38

Experimental Results

Experimental Setup

SB defined at LUT level

Switches allowed between adjacent LUTs

564 potential switch types

39

Experimental Setup

SB defined at LUT level

Switches allowed between adjacent LUTs

564 potential switch types

39

Experimental Setup

SB defined at LUT level

Switches allowed between adjacent LUTs

564 potential switch types

39

Experimental Setup

SB defined at LUT level

Switches allowed between adjacent LUTs

564 potential switch types

39

Comparison with Greedy

40

Comparison with Greedy

40

Comparison with Greedy

40

Comparison with Greedy

40

Comparison with Greedy

40

Comparison with Greedy

40

Comparison with Greedy

40

Avalanche vs Greedy: Switch Selection Choices

H
1
L

H
2
L

H
4
L

H
6
L

H
1
R

H
2
R

H
4
R

H
6
R

V
1
U

V
4
U

V
1
D

V
4
D

H1L

H2L

H4L

H6L

H1R

H2R

H4R

H6R

V1U

V4U

V1D

V4D

1 1 1 1 0 0 0 0 2 1 1 0

2 0 1 0 0 0 0 0 1 0 1 0

1 0 1 0 0 0 0 0 1 1 1 0

1 0 1 1 0 0 0 0 1 0 1 0

0 0 0 0 1 1 2 1 3 1 2 0

0 0 0 0 1 0 0 0 1 1 1 0

0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 0 1 1 1 1 1 1 0

2 1 1 1 2 1 1 1 2 1 0 0

1 0 0 0 1 0 1 1 1 1 0 0

2 1 1 1 2 1 1 1 0 0 2 1

1 1 1 1 1 1 1 1 0 0 1 0
H
1
L

H
2
L

H
4
L

H
6
L

H
1
R

H
2
R

H
4
R

H
6
R

V
1
U

V
4
U

V
1
D

V
4
D

H1L

H2L

H4L

H6L

H1R

H2R

H4R

H6R

V1U

V4U

V1D

V4D

0 1 0 1 0 0 0 0 3 0 2 0

1 0 0 0 0 0 0 0 2 0 2 0

1 1 1 0 0 0 0 0 2 0 1 0

1 1 1 1 0 0 0 0 1 0 1 0

0 0 0 0 1 0 0 0 4 1 3 0

0 0 0 0 2 0 0 0 2 1 1 0

0 0 0 0 2 1 1 0 2 1 1 0

0 0 0 0 1 1 1 1 2 0 1 0

4 2 1 0 4 2 1 0 4 1 0 0

1 1 0 0 1 1 1 0 1 0 0 0

2 1 0 0 2 1 1 1 0 0 2 0

1 1 0 0 0 0 0 0 0 0 1 0

avalanche truncated greedy

41

Avalanche vs Greedy: Switch Selection Choices

H
1
L

H
2
L

H
4
L

H
6
L

H
1
R

H
2
R

H
4
R

H
6
R

V
1
U

V
4
U

V
1
D

V
4
D

H1L

H2L

H4L

H6L

H1R

H2R

H4R

H6R

V1U

V4U

V1D

V4D

1 1 1 1 0 0 0 0 2 1 1 0

2 0 1 0 0 0 0 0 1 0 1 0

1 0 1 0 0 0 0 0 1 1 1 0

1 0 1 1 0 0 0 0 1 0 1 0

0 0 0 0 1 1 2 1 3 1 2 0

0 0 0 0 1 0 0 0 1 1 1 0

0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 0 1 1 1 1 1 1 0

2 1 1 1 2 1 1 1 2 1 0 0

1 0 0 0 1 0 1 1 1 1 0 0

2 1 1 1 2 1 1 1 0 0 2 1

1 1 1 1 1 1 1 1 0 0 1 0
H
1
L

H
2
L

H
4
L

H
6
L

H
1
R

H
2
R

H
4
R

H
6
R

V
1
U

V
4
U

V
1
D

V
4
D

H1L

H2L

H4L

H6L

H1R

H2R

H4R

H6R

V1U

V4U

V1D

V4D

0 1 0 1 0 0 0 0 3 0 2 0

1 0 0 0 0 0 0 0 2 0 2 0

1 1 1 0 0 0 0 0 2 0 1 0

1 1 1 1 0 0 0 0 1 0 1 0

0 0 0 0 1 0 0 0 4 1 3 0

0 0 0 0 2 0 0 0 2 1 1 0

0 0 0 0 2 1 1 0 2 1 1 0

0 0 0 0 1 1 1 1 2 0 1 0

4 2 1 0 4 2 1 0 4 1 0 0

1 1 0 0 1 1 1 0 1 0 0 0

2 1 0 0 2 1 1 1 0 0 2 0

1 1 0 0 0 0 0 0 0 0 1 0

avalanche truncated greedy

41

Avalanche vs Greedy: Switch Selection Choices

avalanche truncated greedy

41

Avalanche vs Greedy: Routability

10 Gnl circuits

Rent’s exponent = 0.7

10k LUT

avalanche 147 145 57 73 56 71 82 59 65 74
trunc. greedy — — — — 278 — — — 149 —

42

Avalanche vs Greedy: Routability

10 Gnl circuits

Rent’s exponent = 0.7

10k LUT

avalanche 147 145 57 73 56 71 82 59 65 74
trunc. greedy — — — — 278 — — — 149 —

42

Comparison with Simulated Annealing

Inspired by M. Lin, J. Wawrzynek, and A. El Gamal,
“Exploring FPGA routing architecture stochastically”, TCAD’10

43

Comparison with Simulated Annealing: Starting Pattern

avalanche

H
1
L

H
2
L

H
4
L

H
6
L

H
1
R

H
2
R

H
4
R

H
6
R

V
1
U

V
4
U

V
1
D

V
4
D

H1L

H2L

H4L

H6L

H1R

H2R

H4R

H6R

V1U

V4U

V1D

V4D

6 2 2 2 0 0 0 0 2 2 2 2

2 1 1 1 0 0 0 0 2 1 2 1

2 1 1 1 0 0 0 0 2 1 2 1

2 1 1 1 0 0 0 0 2 1 2 1

0 0 0 0 6 2 2 2 2 2 2 2

0 0 0 0 2 1 1 1 2 1 2 1

0 0 0 0 2 1 1 1 2 1 2 1

0 0 0 0 2 1 1 1 2 1 2 1

2 2 2 2 2 2 2 2 6 2 0 0

2 1 1 1 2 1 1 1 2 1 0 0

2 2 2 2 2 2 2 2 0 0 6 2

2 1 1 1 2 1 1 1 0 0 2 1

ISFPGA'21

[1] S. Nikolić, F. Catthoor, Z. Tőkei, and P. Ienne,
“Global is the New Local: FPGA Architecture at 5nm and Beyond”, FPGA’21

44

Comparison with Simulated Annealing: Setup

• Each move is an exclusion/inclusion of one of the 564 switch types

• cost function = f(CPD, tile area)

45

Comparison with Simulated Annealing: Setup

• Each move is an exclusion/inclusion of one of the 564 switch types

Potential switch types

• cost function = f(CPD, tile area)

45

Comparison with Simulated Annealing: Setup

• Each move is an exclusion/inclusion of one of the 564 switch types

Potential switch types

• cost function = f(CPD, tile area)

45

Comparison with Simulated Annealing: Setup

• Each move is an exclusion/inclusion of one of the 564 switch types

Potential switch types

• cost function = f(CPD, tile area)

45

Comparison with Simulated Annealing: Setup

• Each move is an exclusion/inclusion of one of the 564 switch types

Potential switch types

• cost function = f(CPD, tile area)

45

Comparison with Simulated Annealing: Setup

• Each move is an exclusion/inclusion of one of the 564 switch types

Potential switch types

• cost function = f(CPD, tile area)

45

Comparison with Simulated Annealing: Setup

• Each move is an exclusion/inclusion of one of the 564 switch types

Potential switch types

• cost function = f(CPD, tile area)

45

Comparison with Simulated Annealing: Outcome

avalanche

H
1
L

H
2
L

H
4
L

H
6
L

H
1
R

H
2
R

H
4
R

H
6
R

V
1
U

V
4
U

V
1
D

V
4
D

H1L

H2L

H4L

H6L

H1R

H2R

H4R

H6R

V1U

V4U

V1D

V4D

6 2 2 2 0 0 0 0 2 2 2 2

2 1 1 1 0 0 0 0 2 1 2 1

2 1 1 1 0 0 0 0 2 1 2 1

2 1 1 1 0 0 0 0 2 1 2 1

0 0 0 0 6 2 2 2 2 2 2 2

0 0 0 0 2 1 1 1 2 1 2 1

0 0 0 0 2 1 1 1 2 1 2 1

0 0 0 0 2 1 1 1 2 1 2 1

2 2 2 2 2 2 2 2 6 2 0 0

2 1 1 1 2 1 1 1 2 1 0 0

2 2 2 2 2 2 2 2 0 0 6 2

2 1 1 1 2 1 1 1 0 0 2 1

ISFPGA'21

+ 30 switches

annealed

46

Comparison with Simulated Annealing: Outcome

+ 10.7%

47

Simulated Annealing: Convergence

48

Conclusions and Future Work

Conclusions

FPGA routers can efficiently
explore switch-block patterns

49

Future Work

Avalanche costs can be attributed to any node in any graph

=⇒ use them to explore the entire routing architecture at once

50

Future Work

Avalanche costs can be attributed to any node in any graph

=⇒ use them to explore the entire routing architecture at once

50

Thank you for attention
https://github.com/EPFL-LAP/fpl21-avalanche

https://github.com/EPFL-LAP/fpl21-avalanche

	one
	Introduction

	two
	Automated Switch-Pattern Exploration
	A Quick Recap on FPGA Routers
	Negotiating Switch Presence
	Avalanche Costs (Key Idea)
	Experimental Results
	Conclusions and Future Work

