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How Do We Explore FPGA Architecture?

Did we explore enough?
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Similar approach applicable to cluster size, channel composition, etc.
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How Do We Explore FPGA Architecture?

What about Switch-Block Patterns? (apologies for a bit of an exaggeration)

£ $ g )
i i N
ik [ S f\,

>

WILTON



Meanwhile in Industry...

NetCracker: A Peek into the Routing Architecture

of Xilinx 7-Series FPGAs

Morten B. Petersen, Stefan Nikoli¢ and Mirjana Stojilovi¢

ifferent

Architectural Enhancements in Intel® Agilex™ FPGAs

Jeff Chromczak Mark Wheeler Charles Chiasson
. c hatl c
Intel Corporation Intel Corporation Intel Corporation

Toronto, Canada Toronto, Canada Seattle, USA
Dana How Martin Langhammer Tim Vanderhoek
danahow@intel.com artinlang 8 4 c
Intel Corporation Intel Corporation Intel Corporation
San Jose, USA United Kingdom Toronto, Canada
Grace Zgheib Tlya Ganusov
ilya. com
Intel Corporation Intel Corporation
San Jose, USA San Jose, USA

of 10 gloal
anzontd DI lanss

Laawoss
Lamawoss

of 4 local
| e anes

Difference increasing
(Technology scaling)



How Do We Explore FPGA Architecture?

Can’t we automate SB-pattern exploration too?



How Do We Explore FPGA Architecture?

Can’t we automate SB-pattern exploration too?

Sure!



How Do We Explore FPGA Architecture?

How bigis N?



How Do We Explore FPGA Architecture?

How bigis N?

[}

T
T

T



How Do We Explore FPGA Architecture?

How bigis N?

[}

T
T

T

30

ZCO)WO!-{I?} ~ 107
10

R=10

w



How Do We Explore FPGA Architecture?

Can’t we automate SB-pattern exploration too?

Sure!



How Do We Explore FPGA Architecture?

Can’t we automate SB-pattern exploration too?

Surely not like this!



Automated Switch-Pattern
Exploration



An Intuitive Solution: Iterative Improvement

Search engine SB-pattern g Router
(e.g., simulated annealing) (e.g., VPR)

T score

[1] M. Lin, J. Wawrzynek, and A. El Gamal, “Exploring FPGA routing
architecture stochastically”, TCAD10




Using the router as a black box

to evaluate enumerated solutions

Is inefficient



This inefficient...



A Little Analogy
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A Little Analogy

You enter a restaurant and order a sSoup.

Waiter: “How do you find the taste of the soup sir, on scale 0-9?"
You: “2"

The waiter goes away with your soup, adds some salt and comes back.

Waiter: “Please try it now sir”
You: “4"

The waiter disappears with the soup again and adds some pepper.

Waiter: “How about now sir?”
You: “3”

The waiter disappears yet again, but this time you leave the table too.
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A Little Analogy

Waiter

Search engine
(e.g., simulated annealing)

Soup YOU

SB-pattern Router
>

T

(e.g., VPR)

score
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A Little Analogy

Now something that we are a bit more accustomed to:

You enter a restaurant and order a soup.

Waiter: “Here you go sir, and here are all the spices we have available, in
case you miss something.”

You try the soup and add a bit of each spice that the waiter gave you,
according to your taste and habit.



Can the router
spice up Its own soup?



Can the router
design the switch-pattern?



A Quick Recap on FPGA Routers




Representing an FPGA as a Graph
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Very Simplified Algorithm

repeat
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Very Simplified Algorithm

repeat

foreach CONNECTION IN THE CIRCUIT do
route using shortest path in the RR-graph;

(different signals can overlap)
update node costs;

end
until OVERUSED NODES EXIST;
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Very Simplified Algorithm

repeat

foreach CONNECTION IN THE CIRCUIT do
route using shortest path in the RR-graph;

(different signals can overlap)

update node costs;
end

update node costs;

until OVERUSED NODES EXIST;
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Very Simplified Algorithm
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Very Simplified Algorithm

repeat

foreach CONNECTION IN THE CIRCUIT do
route using shortest path in the RR-graph;

(different signals can overlap)

update node costs;
end

update node costs;
throw away all routing (rip-up);
until OVERUSED NODES EXIST;
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Very Simplified Algorithm
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Very Simplified Algorithm

Signals negotiate which one will
give up its desired nodes
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Negotiating Switch Presence
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Use the router’s decisions to select switches for fabrication



A Simple Greedy Solution

Usage(e) = # SB instances (tiles) in which a switch type e is used.

switch type A

N 1]

switch type B

switch type B (0, 0) (1, 0) (2,0)

1] /I

switch type A "



A Simple Greedy Solution

Usage(e) = # SB instances (tiles) in which a switch type e is used.

(2,1 (3,1) Usage(A)=5

I I I Usage(B) =3

(0, 0) (1, 0) (2,0) (3,0)
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A Simple Greedy Solution

Usage(e) = # SB instances (tiles) in which a switch type e is used.

Set the cost of all switch types not yet taken to some small cost e.
Route all circuits.

Find the maximum Usage of all switch types, Usagemqy.

Take all switch types with Usage > Usagemq./0, 6 > 1.

o ok w Ny -

Set the cost of all taken switch types to 0.
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A Simple Greedy Solution

Usage(e) = # SB instances (tiles) in which a switch type e is used.

Set the cost of all switch types not yet taken to some small cost e.
Route all circuits.

Find the maximum Usage of all switch types, Usagemqy.

Take all switch types with Usage > Usagemq./0, 6 > 1.

Set the cost of all taken switch types to 0.

S A A

If there are newly taken switch types, go to step 2.
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A Simple Greedy Solution: Failure

signal 1 H2Rax4Y7L.2 signal 2 H2Rax9Y13L1 signal 3 H2Rax25Y11L3
H2RbX2Y712 H2RbX4Y712 H2RbX7Y13L1 H2RbX9Y13L1 H2RbX23Y11L3 H2RbX25Y11L3
H2ReX4Y712 H2RcX9Y13L1 H2RcX25Y11L3

31



A Simple Greedy Solution: Failure

signal 1 E signal 2 E signal 3 E

31



A Simple Greedy Solution: Failure

signal 1 X4Y7 signal 2 X9Y13 signal 3 X25Y11
X2Y7 X4Y7 X7Y13 X9Y13 X23Y11 X25Y11
X&Y7 X9Y13 X25Y11
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A Simple Greedy Solution: Failure

1.
2.
3.
4.
5.
6.

Set the cost of all switch types not yet taken to some small cost e.
Route all circuits.

Find the maximum Usage of all switch types, Usage .

Take all switch types with Usage > Usagemq./6,0 > 1.

Set the cost of all taken switch types to 0.

If there are newly taken switch types, go to step 2.
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A Simple Greedy Solution: Failure

1.
2.
3.
4.
5.
6.

Must take all three switch types from the example

Set the cost of all switch types not yet taken to some small cost e.
Route all circuits.

Find the maximum Usage of all switch types, Usage .

Take all switch types with Usage > Usagemq./6,0 > 1.

Set the cost of all taken switch types to 0.

If there are newly taken switch types, go to step 2.

32



Avalanche Costs (Key Idea)




Avalanche Costs: Rationale

repeat

foreach CONNECTION IN THE CIRCUIT do
route using shortest path in the RR-graph;

update node costs;
end

update node costs;

throw away all routing (rip-up);
until OVERUSED NODES EXIST;
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Avalanche Costs: Rationale

What if switch costs were inversely related to Usage?
(Usage is common to all instances of the same switch type)
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Avalanche Costs: Rationale

What if switch costs were inversely related to Usage?
(Usage is common to all instances of the same switch type)
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Avalanche Costs: Rationale

repeat

foreach CONNECTION IN THE CIRCUIT do
route using shortest path in the RR-graph;

update node costs;
end

update node costs;
throw away all routing (rip-up);
until OVERUSED NODES EXIST;

After rip-up, more signals move to switches with higher Usage,
creating an avalanche effect
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Avalanche Costs: Similarity with Congestion Negotiation

Signals negotiate which one will
give up its desired nodes

-
v
/ WQ\ clusterinputs @ @
{ 1 cluster outputs (WX )
7t 1
RN
1 -~ 4
/

= = V4

wires

7’ ~ 7
D.n__‘l' CLB Fm‘F/ﬂ CLB lﬁ* CLB
Q b

cluster inputs

Q cluster outputs ® O
[n] CLB [n] CLB CLB

Each node has a cost
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Avalanche Costs: Similarity with Congestion Negotiation

Signals negotiate which one will
give up its desired nodes

Spreads the routes over more wire instances Concentrates the routes on fewer switch types

——> congestion-free routing —=> optimizes the switch-pattern

Circuit Routing with SB-Pattern Design with
Pathfinder Avalanche Costs
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Avalanche Costs: Effects
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Avalanche Costs: Effects
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The Complete Algorithm

Very similar to Simple Greedy:

1. Set the cost of all switch types not yet taken to some small cost e.

Route all circuits.

Find the maximum Usage of all switch types, Usagemqx.
Take all switch types with Usage > Usagemq/6,0 > 1.
Set the cost of all taken switch types to 0.

o kW N

If there are newly taken switch types, go to step 2.
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The Complete Algorithm

Very similar to Simple Greedy:

1.

o LA W

Set the cost of all switch types not yet taken to seme-smatt-coste:
their starting avalanche cost.

Route all circuits updating avalanche costs.

Find the maximum Usage of all switch types, Usagemqx.
Take all switch types with Usage > Usagemq/6,0 > 1.
Set the cost of all taken switch types to 0.

If there are newly taken switch types, go to step 2.

More details in the paper
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SB defined at LUT level
Switches allowed between adjacent LUTs

564 potential switch types
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Comparison with Greedy

avalanche greedy
#iterations 63 228
#switches 93 438

ﬁavg anvg tavg [ps] ﬁan anVg tan [pS]

H1 5 5 14.5) 31 25 23.1
H2 5 5 17.8| 28 28 31.6
H4 8 7 259 21 27 43.2
H6 6 6 3491 19 25 59.6
V1 7 7 222 38 31 35.5
V4 5 8 717 12 27 97.5

W(tile) 6816 nm 8904 nm
CPD 1.40 ns 1.71 ns
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Avalanche vs Greedy: Switch Selection Choices
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Avalanche vs Greedy: Routability

10 Gnl circuits
Rent's exponent = 0.7

10k LUT

avalanche 147 | 145157 |73 | 56|71(82|59| 65|74
trunc. greedy | —| —| —| —1[278| —| —| —|149| —
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Avalanche vs Greedy: Routability
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Rent's exponent = 0.7

10k LUT
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Comparison with Simulated Annealing

Inspired by M. Lin, J. Wawrzynek, and A. El Gamal,
“Exploring FPGA routing architecture stochastically”, TCAD'10
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Comparison with Simulated Annealing: Setup

- Each move is an exclusion/inclusion of one of the 564 switch types
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Outcome
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Comparison with Simulated Annealing: Outcome

avalanche initial annealed
#switches 93 180 210
ﬁavg anvg tavg [ps] ﬁavg fOavg tavg [ps] ﬁavg anvg tavg [ps]
H1 5 5 1451 10 10 16.0] 13 13 19.6
H2 5 5 17.8| 11 11 2131 14 11 24.1
H4 8 7 259( 11 11 30.8| 16 12 32.1
H6 6 6 349| 11 11 43.1 9 13 473
V1 7 7 2221 12 12 246 14 15 29.2
V4 5 8 7171 13 13 7431 13 15 86.8
W(tile) 6816 nm 7464 nm 7488 nm
CPD |1.40 ns| 1.46 ns |1.55 ns|

+10.7%
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Simulated Annealing: Convergence
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Conclusions and Future Work




Conclusions

FPGA routers can efficiently
explore switch-block patterns
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Future Work

Avalanche costs can be attributed to any node in any graph
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Future Work

Avalanche costs can be attributed to any node in any graph

— use them to explore the entire routing architecture at once

50



Thank you for attention

https://github.com/EPFL-LAP/fpl21-avalanche


https://github.com/EPFL-LAP/fpl21-avalanche
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