Turning PathFinder Upside-Down:
Exploring FPGA Switch-Blocks by Negotiating Switch Presence

: Stefan Nikoli¢ and Paolo lenne

FPL'21, Dresden, 02.09.2021

Ecole Polytechnique Fédérale de Lausanne

How Do We Explore FPGA Architecture?

K €{2,3,4,5,6,7}

CLB

How Do We Explore FPGA Architecture?

K €{2,3,4,5,6, 7}

CLB

How Do We Explore FPGA Architecture?

K €{2,3,4,5,6,7}

CLB

How Do We Explore FPGA Architecture?

K €{2,3,4,5,6,7}

%

o] CAD

1 (e.g., VPR)
4[4
s
CLB CLB

How Do We Explore FPGA Architecture?

K €{2,3,4,5,6,7}

i
1. Ahmed and Rose, 2003

APD

EfEEqc CAD
SHH (e.g., VPR) ——
2feim
.. =8 e

How Do We Explore FPGA Architecture?

Did we explore enough?

Ahmed and Rose, 2003

APD

How Do We Explore FPGA Architecture?

Did we explore enough?

(K-1)-LUT
Ahmed and Rose, 2003 A(K-LUT) > 2 x A((K —1)-LUT)
2 = -
K-1
(K-1)-LUT
1 1 1 1 J
2 3 4 5 6 7

K-LUT

How Do We Explore FPGA Architecture?

Did we explore enough?

(K-1)-LUT
Ahmed and Rose, 2003 A(K-LUT) > 2 x A((K —1)-LUT)
2 = -
K-1
(K-1)-LUT
1 1 1 1 J
2 3 4] 5 6 7 K-LUT

Similar approach applicable to cluster size, channel composition, etc.

How Do We Explore FPGA Architecture?

What about Switch-Block Patterns?

How Do We Explore FPGA Architecture?

What about Switch-Block Patterns?

SUBSET

How Do We Explore FPGA Architecture?

What about Switch-Block Patterns?

A very smart engineer at Xilinx Some very smart people in
gets an idea Texas and Hong Kong
get an idea
[o
*))
@‘b QQ
SUBSET UNIVERSAL

How Do We Explore FPGA Architecture?

What about Switch-Block Patterns?

A very smart engineer at Xilinx Some very smart people in A very smart person
gets an idea Texas and Hong Kong at UoT
get an idea gets an idea
e PRI,
*) N
& 3 &
SUBSET UNIVERSAL WILTON

How Do We Explore FPGA Architecture?

What about Switch-Block Patterns? (apologies for a bit of an exaggeration)

£ $ g)
i i N
ik [S f\,

>

WILTON

Meanwhile in Industry...

NetCracker: A Peek into the Routing Architecture

of Xilinx 7-Series FPGAs

Morten B. Petersen, Stefan Nikoli¢ and Mirjana Stojilovi¢

ifferent

Architectural Enhancements in Intel® Agilex™ FPGAs

Jeff Chromczak Mark Wheeler Charles Chiasson
. c hatl c
Intel Corporation Intel Corporation Intel Corporation

Toronto, Canada Toronto, Canada Seattle, USA
Dana How Martin Langhammer Tim Vanderhoek
danahow@intel.com artinlang 8 4 c
Intel Corporation Intel Corporation Intel Corporation
San Jose, USA United Kingdom Toronto, Canada
Grace Zgheib Tlya Ganusov
ilya. com
Intel Corporation Intel Corporation
San Jose, USA San Jose, USA

of 10 gloal
anzontd DI lanss

Laawoss
Lamawoss

of 4 local
| e anes

Difference increasing
(Technology scaling)

How Do We Explore FPGA Architecture?

Can’t we automate SB-pattern exploration too?

How Do We Explore FPGA Architecture?

Can’t we automate SB-pattern exploration too?

Sure!

How Do We Explore FPGA Architecture?

How bigis N?

How Do We Explore FPGA Architecture?

How bigis N?

[}

T
T

T

How Do We Explore FPGA Architecture?

How bigis N?

[}

T
T

T

30

ZCO)WO!-{I?} ~ 107
10

R=10

w

How Do We Explore FPGA Architecture?

Can’t we automate SB-pattern exploration too?

Sure!

How Do We Explore FPGA Architecture?

Can’t we automate SB-pattern exploration too?

Surely not like this!

Automated Switch-Pattern
Exploration

An Intuitive Solution: Iterative Improvement

Search engine SB-pattern g Router
(e.g., simulated annealing) (e.g., VPR)

T score

[1] M. Lin, J. Wawrzynek, and A. El Gamal, “Exploring FPGA routing
architecture stochastically”, TCAD10

Using the router as a black box

to evaluate enumerated solutions

Is inefficient

This inefficient...

A Little Analogy

You enter a restaurant and order a sSoup.

12

A Little Analogy

You enter a restaurant and order a sSoup.

Waiter: “How do you find the taste of the soup sir, on scale 0-9?"

12

A Little Analogy

You enter a restaurant and order a sSoup.

Waiter: “How do you find the taste of the soup sir, on scale 0-9?"
You: “2"

12

A Little Analogy

You enter a restaurant and order a sSoup.

Waiter: “How do you find the taste of the soup sir, on scale 0-9?"
You: “2"

The waiter goes away with your soup, adds some salt and comes back.

12

A Little Analogy

You enter a restaurant and order a sSoup.

Waiter: “How do you find the taste of the soup sir, on scale 0-9?"
You: “2"

The waiter goes away with your soup, adds some salt and comes back.

Waiter: “Please try it now sir”

12

A Little Analogy

You enter a restaurant and order a sSoup.

Waiter: “How do you find the taste of the soup sir, on scale 0-9?"
You: “2"

The waiter goes away with your soup, adds some salt and comes back.

Waiter: “Please try it now sir”
You: “4"

12

A Little Analogy

You enter a restaurant and order a sSoup.

Waiter: “How do you find the taste of the soup sir, on scale 0-9?"
You: “2"

The waiter goes away with your soup, adds some salt and comes back.

Waiter: “Please try it now sir”
You: “4"

The waiter disappears with the soup again and adds some pepper.

12

A Little Analogy

You enter a restaurant and order a sSoup.

Waiter: “How do you find the taste of the soup sir, on scale 0-9?"
You: “2"

The waiter goes away with your soup, adds some salt and comes back.

Waiter: “Please try it now sir”
You: “4"

The waiter disappears with the soup again and adds some pepper.

Waiter: “How about now sir?”

12

A Little Analogy

You enter a restaurant and order a sSoup.

Waiter: “How do you find the taste of the soup sir, on scale 0-9?"
You: “2"

The waiter goes away with your soup, adds some salt and comes back.

Waiter: “Please try it now sir”
You: “4"

The waiter disappears with the soup again and adds some pepper.

Waiter: “How about now sir?”
You: “3”

12

A Little Analogy

You enter a restaurant and order a sSoup.

Waiter: “How do you find the taste of the soup sir, on scale 0-9?"
You: “2"

The waiter goes away with your soup, adds some salt and comes back.

Waiter: “Please try it now sir”
You: “4"

The waiter disappears with the soup again and adds some pepper.

Waiter: “How about now sir?”
You: “3”

The waiter disappears yet again, but this time you leave the table too.

12

A Little Analogy

Waiter

Search engine
(e.g., simulated annealing)

Soup YOU

SB-pattern Router
>

T

(e.g., VPR)

score

13

A Little Analogy

Now something that we are a bit more accustomed to:

You enter a restaurant and order a soup.

A Little Analogy

Now something that we are a bit more accustomed to:

You enter a restaurant and order a soup.

Waiter: “Here you go sir, and here are all the spices we have available, in
case you miss something.”

A Little Analogy

Now something that we are a bit more accustomed to:

You enter a restaurant and order a soup.

Waiter: “Here you go sir, and here are all the spices we have available, in
case you miss something.”

You try the soup and add a bit of each spice that the waiter gave you,
according to your taste and habit.

Can the router
spice up Its own soup?

Can the router
design the switch-pattern?

A Quick Recap on FPGA Routers

Representing an FPGA as a Graph

7 N
/ WQ\ clusterinputs @ @ @
{ 1 cluster outputs
" —v— 1
1\
S /
-7
/

wires

1 ~
1
17 = ~ 7
Eiq' CLB }m“zﬂ CLB m* CLB
/
9 7

cluster inputs @

[J
@ cluster outputs ® ©o
[n] CLB [n] CLB CLB

Each node has a cost

Very Simplified Algorithm

repeat

foreach CONNECTION IN THE CIRCUIT do
route using shortest path in the RR-graph;

update node costs;

end
until OVERUSED NODES EXIST;

Very Simplified Algorithm

repeat

foreach CONNECTION IN THE CIRCUIT do
route using shortest path in the RR-graph;

update node costs;

end
until OVERUSED NODES EXIST;

Very Simplified Algorithm

/7 N
/ WQ\ clusterinputs @ @ (]
{ 1 cluster outputs

U 1
I\

AN /
1 ~ -7
/7

wires

1
= 7
D:T_‘I' CLB “:m CLB CLB
@ /
/.

clusterinputs @\ @
o cluster outputs o O
[n] CLB [n] CLB CLB

Each node has a cost

Very Simplified Algorithm

/7 N
/ WQ\ clusterinputs @ @
{ 1 cluster outputs

U 1
I\

AN /
1 ~ -7
/

wires

1
= 7
D:T_‘I' CLB “:m CLB CLB
@ /
/.

cluster inputs

[J
o cluster outputs o O
[n] CLB [n] CLB CLB

Each node has a cost

Very Simplified Algorithm

repeat

foreach CONNECTION IN THE CIRCUIT do
route using shortest path in the RR-graph;

(different signals can overlap)
update node costs;

end
until OVERUSED NODES EXIST;

20

Very Simplified Algorithm

/7 N
/ WQ\ clusterinputs @ @
{ 1 cluster outputs

U 1
I\

AN /
1 ~ -7
/

wires

1
= 7
D:T_‘I' CLB “:m CLB CLB
@ /
/.

cluster inputs

[J
o cluster outputs o O
[n] CLB [n] CLB CLB

Each node has a cost

21

Very Simplified Algorithm

7/ N
/ WQ\ clusterinputs @ @
{ 1 cluster outputs

U 1
I\

AN /
1 ~ -7
/

wires

1
= 7
D:T_‘I' CLB “:m CLB CLB
@ /
/.

cluster inputs

[J
o cluster outputs o O
[n] CLB [n] CLB CLB

Each node has a cost

21

Very Simplified Algorithm

repeat

foreach CONNECTION IN THE CIRCUIT do
route using shortest path in the RR-graph;

(different signals can overlap)

update node costs;
end

update node costs;

until OVERUSED NODES EXIST;

22

Very Simplified Algorithm

7/ N
/ WQ\ clusterinputs @ @
{ 1 cluster outputs

U 1
I\

AN /
1 ~ -7
/

wires

1
= 7
D:T_‘I' CLB “:m CLB CLB
@ /
/.

cluster inputs

[J
o cluster outputs o O
[n] CLB [n] CLB CLB

Each node has a cost

23

Very Simplified Algorithm

clusterinputs @ @
cluster outputs

Cost of overused
nodes increases _ - -

wires

o

/— 5\
/ WQ\
—=D~1
1\
N /
1 ~ -7
1/ /
o= =~ /
17 ~ /7
D:T_‘I' CLB }m“m CLB Iﬂ+ CLB
/
9 /
Q
Oa] CLB 0ol CLB CLB

cluster inputs
cluster outputs

Each node has a cost

23

Very Simplified Algorithm

repeat

foreach CONNECTION IN THE CIRCUIT do
route using shortest path in the RR-graph;

(different signals can overlap)

update node costs;
end

update node costs;
throw away all routing (rip-up);
until OVERUSED NODES EXIST;

24

Very Simplified Algorithm

-
Ve N
/ —Q\ clusterinputs @ @ @
{ 1 cluster outputs
T T
I\ /
N
/ ~ -7
/ /
- = z
k4 ~ / wires
m) CLB }m“m CLB Il# CLB
/
o /

6) clusterinputs @\ @
cluster outputs
[n] CLB FEI!EE! CLB Il# CLB

Each node has a cost

25

Very Simplified Algorithm

-
Ve N
/ —Q\ clusterinputs @ @
{ 1 cluster outputs
" []
I\ /
N
/ ~ -7
/ /
- = z
k4 ~ / wires
m) CLB }m“m CLB Il# CLB
/
o /

cluster inputs

[J
Q cluster outputs ® O
[n] CLB [n] CLB CLB

Each node has a cost

25

Very Simplified Algorithm

-
Ve N\
{ 1
Iid 1
1\
oo /
/ ~ -7
1/ /
-~ V4
17 ~ 7
Dq' CLB }m“m CLB Iﬁ* CLB
/
9} 2,
Q
0ol CLB W Cm] CLB CLB

cluster inputs @
cluster outputs

cluster inputs
cluster outputs

Each node has a cost

wires

25

Very Simplified Algorithm

Signals negotiate which one will
give up its desired nodes

-
v
/ WQ\ clusterinputs @ @
{ 1 cluster outputs (WX)
7t 1
RN
1 -~ 4
/

= = V4

wires

7’ ~ 7
D.n__‘l' CLB Fm‘F/ﬂ CLB lﬁ* CLB
Q b

cluster inputs

Q cluster outputs ® O
[n] CLB [n] CLB CLB

Each node has a cost

25

Negotiating Switch Presence

26

[—

H1Ra

H1Rb
L;
L

H2Ra
H2la

H4Ra
Hala

H6Ra
HéLa

c
—
Q
=
)
©
o
1
m
(p)
Q
e
)
o
.00
n
Q
()
Q
>
O
(0’
Q
e
)
o
=
]
(¢))
-l

c L] s egvA e o B_ayA
[J) 2 2 qain e ©qaLn
> eqin e ® eqLA
.Glb BeNYA @ eenyA
o anin e ednin
®| L] ee
= e ot
o
a = m elvH @ ® evH
% = T elzHe o eTzH
L qitHe o qILH
@ — ellHe ® BILH
= 2d9H © eRu9H
— RY7H @ o RYYH
M s|| eTH e ®BUTH
S]
3| & RLHe LK
edlH e o RYLH
o |wa
22|\ Il=3
II||ETD
V4Da : v4Da
ViDa VIDa
viph vibh
niA qnLA
envA NIA ———— v ————¢nin envA

O
o

[g 5 0
[3) 2 2. Q
> ==
) oo
) %W_
© sl 5RO
) I
o .o
c = S50
— W own
[= =9
= < tlg e
a T T _Im e
<
D_- 28||l=a +
B IT||ET
e V4Da V4Da
= VB VB
+ eNyA __”#»\A‘ \A’mm__u» BNYA
c
o
wn g8||I=g
(ab) TI|| &g
()]
- gl 3
x I
gl 3
== ==

H6Ra
HéLa

eavi ® e ey
qain e °qatn
o) edLA e ® edLA
Q@ ©nvhe eenyA
.m. anita e e qnLA
O °Nine e BNLA
‘T ®l9He e vI9H
O ElvHe e EvH
G elHe L B
Y= quHe ® qILH
QD ellHe ® BlLH
O eyone @ 2YoH
QO vedtHe o ByYH
= eszre e ZH
QulH e ® QiLH
- eylH e ®BYLH
-
()]
)
)
)
(T
1
m
wn
(D]
<
+— —
Q
= =
R S
wn (@)
e —
() (o))
— e
Q +—
= (@)
O t
°
m — 7\
t m Y"f
on wn
= o
= a
(D]
—

27

Use the router’s decisions to select switches for fabrication

A Simple Greedy Solution

Usage(e) = # SB instances (tiles) in which a switch type e is used.

switch type A

N 1]

switch type B

switch type B (0, 0) (1, 0) (2,0)

1] /I

switch type A "

A Simple Greedy Solution

Usage(e) = # SB instances (tiles) in which a switch type e is used.

(2,1 (3,1) Usage(A)=5

I I I Usage(B) =3

(0, 0) (1, 0) (2,0) (3,0)

28

A Simple Greedy Solution

Usage(e) = # SB instances (tiles) in which a switch type e is used.

1. Set the cost of all switch types not yet taken to some small cost e.

29

A Simple Greedy Solution

Usage(e) = # SB instances (tiles) in which a switch type e is used.

1. Set the cost of all switch types not yet taken to some small cost e.
2. Route all circuits.

29

A Simple Greedy Solution

Usage(e) = # SB instances (tiles) in which a switch type e is used.

1. Set the cost of all switch types not yet taken to some small cost e.
2. Route all circuits.
3. Find the maximum Usage of all switch types, Usagemqx.

29

A Simple Greedy Solution

Usage(e) = # SB instances (tiles) in which a switch type e is used.

1. Set the cost of all switch types not yet taken to some small cost e.
2. Route all circuits.

3. Find the maximum Usage of all switch types, Usagemqx.

4. Take all switch types with Usage > Usagemq /6,0 > 1.

29

A Simple Greedy Solution

Usage(e) = # SB instances (tiles) in which a switch type e is used.

Set the cost of all switch types not yet taken to some small cost e.
Route all circuits.

Find the maximum Usage of all switch types, Usagemqy.

Take all switch types with Usage > Usagemq./0, 6 > 1.

o ok w Ny -

Set the cost of all taken switch types to 0.

29

A Simple Greedy Solution

Usage(e) = # SB instances (tiles) in which a switch type e is used.

Set the cost of all switch types not yet taken to some small cost e.
Route all circuits.

Find the maximum Usage of all switch types, Usagemqy.

Take all switch types with Usage > Usagemq./0, 6 > 1.

Set the cost of all taken switch types to 0.

S A A

If there are newly taken switch types, go to step 2.

29

c
—
(¢)}
-
+—
©
(a
1
(a)]
wn
(e}
=
+—
=
.o
n
()]
()
—
Q
+—
>
(@]
(0’
(¢}
e
-
on
=
]
(¢)}
-

ted

ICa

To be fabr

Presented to the router

eavA @
qain e
eqdLA @
enyA @
qnLA e
enilA e
eT9H @
eT7H @
eIZH e
qllHe
ellH e
BY9H @
BY7H @
BYCH @
QiLHe
BJLH @

® ey
o qdLA
® eqLA
e BNYA
o qnLA
® eNLA
©® e9H
® e7H
® ¥ZH
® JTLH
® BJLH
® BY9H
o RY7H
® BYCH
o QiLH
® BYLH

edvA

Ale qALA
/ eaLA

eNyA

$ ANLA

enLA
BT9H
eT%7H
BTCH
qILH
EILH
BY9H
BY7H
RYCH
QiLH
BYLH

30

c
—
(¢)}
-
+—
©
(a
1
(a)]
wn
(e}
=
+—
=
.o
n
()]
()
—
Q
+—
>
(@]
(0’
(¢}
e
-
on
=
]
(¢)}
-

ted

ICa

To be fabr

Presented to the router

QA &————e@ BQYA\
qdLA e————— e qdLA
egLA &e——— e e(IA
eN7A &——— e BNYA
qNLA e——————— e qniLA
eNIA &—————— e BNIA
ET9H @ ® ©19H
eT7H &————e@ BYH
eTCH &——e BZH
qILlHe—— e qTLH
eJlH &——e ®lH
BY9H @ ©® BY9H
eY7H &————e BUYH
BiCHe——— e BYCH
qilHe——————e@ QiLH
BYLH &———@ BYLH

eQvA
Ale qALA
/» eaLn
eNyA
e 4NLA
s eNLA
>e 210H
eTYH
eZH
qILH
2LH
» 24oH
S LYY H
Yo RUZH
2o QLH
eYLH

30

ted

© N\
D NXX
| -
o)
O
(D)
o)
(@]
=
c
-
()]
P}
)
)
(T
1
m
(Vp)
(D]
= .
eavA
c m qaLA q¥s
on S ealn
% nrv eNYA
o) qnLA
— = e
m +— PI9H
e9H
w .m e1zH
I w qILH
eLH
m ..m BYOH
— o B
on H ouzH
< m qQYLH
= O B
(D]
—l

30

c
—
(¢)}
-
+—
©
(a
1
(a)]
wn
(e}
=
+—
=
.o
n
()]
()
—
Q
+—
>
(@]
(0’
(¢}
e
-
on
=
]
(¢)}
-

ted

ICa

To be fabr

Presented to the router

30

c
—
(¢)}
-
+—
©
(a
1
(a)]
wn
(e}
=
+—
=
.o
n
()]
()
—
Q
+—
>
(@]
(0’
(¢}
e
-
on
=
]
(¢)}
-

ted

ICa

To be fabr

Presented to the router

BAYA
qata
edLA
eNyA -
qnLA
enLA
eT9H
eT7H
eTCH
qILH
BILH
BY9H
BY7H
BYCH o/
qiLH &+
BYLH

eQvA
Ale qALA
/» eaLn
eNyA
» aNLA
s eNLA
>e 210H
eTYH
eZH
qILH
2LH
» 24oH
S LYY H
Yo RUZH
2o QLH
eYLH

30

A Simple Greedy Solution: Failure

signal 1 H2Rax4Y7L.2 signal 2 H2Rax9Y13L1 signal 3 H2Rax25Y11L3
H2RbX2Y712 H2RbX4Y712 H2RbX7Y13L1 H2RbX9Y13L1 H2RbX23Y11L3 H2RbX25Y11L3
H2ReX4Y712 H2RcX9Y13L1 H2RcX25Y11L3

31

A Simple Greedy Solution: Failure

signal 1 E signal 2 E signal 3 E

31

A Simple Greedy Solution: Failure

signal 1 X4Y7 signal 2 X9Y13 signal 3 X25Y11
X2Y7 X4Y7 X7Y13 X9Y13 X23Y11 X25Y11
X&Y7 X9Y13 X25Y11

31

A Simple Greedy Solution: Failure

sigy H2Rax4Y7L2 signal 2 H2Rax9Y13L1 signal 3 H2Rax25Y11L3
H2RbX2Y712 H2RbX4Y712 H2RbX7Y13L1 H2RbX9Y13L1 H2RbX23Y11L3 H2RbX25Y11L3
H2RcX4Y71.2 H2RcX9Y13L1 H2RcX25Y11L3

31

A Simple Greedy Solution: Failure

sigy H2Rax4Y7L2 signal 2 H2Rax9Y13L1 signal 3 H2Rax25Y11L3
H2RbX2Y712 H2RbX4Y712 H2RbX7Y13L1 H2RbX9Y13L1 H2RbX23Y11L3 H2RbX25Y11L3

H2ReX4Y712 \ H2RcX9Y13L1 H2RcX25Y11L3

31

A Simple Greedy Solution: Failure

sigy H2Rax4Y7L2 signal 2 H2Rax9Y13L1 signal 3 H2Rax25Y11L3
H2RbX2Y712 H2RbX4Y712 H2RbX7Y13L1 H2RbX9Y13L1 H2RbX23Y11L3 H2RbX25Y11L3

H2ReX4Y712 \ H2RcX9Y13L1 H2RcX25Y11L3

31

A Simple Greedy Solution: Failure

1.
2.
3.
4.
5.
6.

Set the cost of all switch types not yet taken to some small cost e.
Route all circuits.

Find the maximum Usage of all switch types, Usage .

Take all switch types with Usage > Usagemq./6,0 > 1.

Set the cost of all taken switch types to 0.

If there are newly taken switch types, go to step 2.

32

A Simple Greedy Solution: Failure

1.
2.
3.
4.
5.
6.

Must take all three switch types from the example

Set the cost of all switch types not yet taken to some small cost e.
Route all circuits.

Find the maximum Usage of all switch types, Usage .

Take all switch types with Usage > Usagemq./6,0 > 1.

Set the cost of all taken switch types to 0.

If there are newly taken switch types, go to step 2.

32

Avalanche Costs (Key Idea)

Avalanche Costs: Rationale

repeat

foreach CONNECTION IN THE CIRCUIT do
route using shortest path in the RR-graph;

update node costs;
end

update node costs;

throw away all routing (rip-up);
until OVERUSED NODES EXIST;

33

Avalanche Costs: Rationale

What if switch costs were inversely related to Usage?
(Usage is common to all instances of the same switch type)

34

Avalanche Costs: Rationale

What if switch costs were inversely related to Usage?
(Usage is common to all instances of the same switch type)

signal 1 H2Rax4Y712 signal 2 H2Rax9Y13L1 signal 3 H2Rax25Y11L3
H2RbX2Y71.2 H2RbX4Y71.2 H2RbX7Y1311 H2RbX9Y13L1 H2RbX23Y11L3 H2RbX25Y11L3
H2RCX4Y712 H2RcX9Y13L1 H2RcX25Y11L3

34

Avalanche Costs: Rationale

What if switch costs were inversely related to Usage?
(Usage is common to all instances of the same switch type)

signal 1 H2Rax4Y712 signal 2 H2Rax9Y13L1 signal 3 H2Rax25Y11L3

H2RbX2Y71.2 H2RbX4Y71.2 H2RbX7Y13L1 H2RbX9Y13L1 H2RbX23Y11L3 H2RbX25Y11L3

H2ReX4Y71.2 H2RcX9Y13L1 H2RcX25Y11L3

34

Avalanche Costs: Rationale

What if switch costs were inversely related to Usage?
(Usage is common to all instances of the same switch type)

sl
&N
<

H2RbX2Y71.2

H2Rax4Y7L.2 signal 2 H2Rax9Y13L1 signal 3 H2Rax25Y11L3

H2RbX4Y71.2 H2RbX7Y13L1 H2RbX9Y13L1 H2RbX23Y11L3 H2RbX25Y11L3

H2ReX4Y71.2 H2RcX9Y13L1 H2RcX25Y11L3

34

Avalanche Costs: Rationale

What if switch costs were inversely related to Usage?
(Usage is common to all instances of the same switch type)

sl
&N
<

H2RbX2Y71.2

H2Rax4Y7L.2 signal 2 H2Rax9Y13L1 signal 3 H2Rax25Y11L3

H2RbX4Y71.2 H2RbX7Y13L1 H2RbX9Y13L1 H2RbX23Y11L3 H2RbX25Y11L3

H2ReX4Y71.2 H2RcX9Y13L1 H2RcX25Y11L3

34

Avalanche Costs: Rationale

What if switch costs were inversely related to Usage?
(Usage is common to all instances of the same switch type)

sigy H2Rax4Y7L.2 sigy
e A
N Q

H2RbX2Y71.2 H2RbX4Y71.2 H2RbX7Y13L1

H2Rax9Y13L1 signal 3 H2Rax25Y11L.3

H2RbX9Y13L1 H2RbX23Y11L3 H2RbX25Y11L3

H2ReX4Y71.2 H2RcX9Y13L1 H2RcX25Y11L3

34

Avalanche Costs: Rationale

What if switch costs were inversely related to Usage?
(Usage is common to all instances of the same switch type)

sigy H2Rax4Y7L.2 sigy
e A
N Q

H2RbX2Y71.2 H2RbX4Y71.2 H2RbX7Y13L1

H2Rax9Y13L1 signal 3 H2Rax25Y11L.3

H2RbX9Y13L1 H2RbX23Y11L3 H2RbX25Y11L3

H2ReX4Y71.2 H2RcX9Y13L1 H2RcX25Y11L3

34

Avalanche Costs: Rationale

What if switch costs were inversely related to Usage?
(Usage is common to all instances of the same switch type)

signal 1 H2RaX4Y712 signal 2 H2Raxov13L1 signal 3 H2RaX25Y1113
S A
N QO

H2RbX2Y71.2 H2RbX4Y71.2 H2RbX7Y13L1 H2RbX9Y13L1 H2RbX23Y11L3 H2RbX25Y11L3

H2ReX4Y71.2 H2RcX9Y13L1 H2RcX25Y11L3

34

Avalanche Costs: Rationale

repeat

foreach CONNECTION IN THE CIRCUIT do
route using shortest path in the RR-graph;

update node costs;
end

update node costs;
throw away all routing (rip-up);
until OVERUSED NODES EXIST;

After rip-up, more signals move to switches with higher Usage,
creating an avalanche effect

35

Avalanche Costs: Similarity with Congestion Negotiation

Signals negotiate which one will
give up its desired nodes

-
v
/ WQ\ clusterinputs @ @
{ 1 cluster outputs (WX)
7t 1
RN
1 -~ 4
/

= = V4

wires

7’ ~ 7
D.n__‘l' CLB Fm‘F/ﬂ CLB lﬁ* CLB
Q b

cluster inputs

Q cluster outputs ® O
[n] CLB [n] CLB CLB

Each node has a cost

36

Avalanche Costs: Similarity with Congestion Negotiation

Signals negotiate which one will
give up its desired nodes

Circuit Routing with SB-Pattern Design with
Pathfinder Avalanche Costs

36

Avalanche Costs: Similarity with Congestion Negotiation

Signals negotiate which one will
give up its desired nodes

Spreads the routes over more wire instances

Circuit Routing with SB-Pattern Design with
Pathfinder Avalanche Costs

36

Avalanche Costs: Similarity with Congestion Negotiation

Signals negotiate which one will
give up its desired nodes

Spreads the routes over more wire instances

——> congestion-free routing

Circuit Routing with SB-Pattern Design with
Pathfinder Avalanche Costs

36

Avalanche Costs: Similarity with Congestion Negotiation

Signals negotiate which one will
give up its desired nodes

Spreads the routes over more wire instances Concentrates the routes on fewer switch types

——> congestion-free routing

Circuit Routing with SB-Pattern Design with
Pathfinder Avalanche Costs

36

Avalanche Costs: Similarity with Congestion Negotiation

Signals negotiate which one will
give up its desired nodes

Spreads the routes over more wire instances Concentrates the routes on fewer switch types

——> congestion-free routing —=> optimizes the switch-pattern

Circuit Routing with SB-Pattern Design with
Pathfinder Avalanche Costs

36

Avalanche Costs: Effects

1000 A

—— no avalanche
800 A

600 -

400 -

200 A

Usage [# switch-blocks]

0 20 40 60 80 100
switch type

37

Avalanche Costs: Effects

1000 7 —— avalanche
—— no avalanche

800

600 -

400 -

200 A

Usage [# switch-blocks]

0 20 40 60 80 100
switch type

37

Avalanche Costs: Effects

1000 7 .) —— avalanche
Few switch types with large usage no avalanche

800

600 -

400 -

200 A

Usage [# switch-blocks]

0 20 40 60 80 100
switch type

37

Avalanche Costs: Effects

__ 10007)) —— avalanche
) Few switch types with large usage no avalanche
S 800 -
S
‘S 600
=]
7
= 400 +
@ Many switch types with moderate and small usage
o 200 1
(%)
>

0 -

0 20 40 60 80 100
switch type

37

The Complete Algorithm

Very similar to Simple Greedy:

1. Set the cost of all switch types not yet taken to some small cost e.

Route all circuits.

Find the maximum Usage of all switch types, Usagemqx.
Take all switch types with Usage > Usagemq/6,0 > 1.
Set the cost of all taken switch types to 0.

o kW N

If there are newly taken switch types, go to step 2.

38

The Complete Algorithm

Very similar to Simple Greedy:

1.

o kW N

Set the cost of all switch types not yet taken to seme-smatt-coste:
their starting avalanche cost.

Route all circuits.

Find the maximum Usage of all switch types, Usagemqx.
Take all switch types with Usage > Usagemq/6,0 > 1.
Set the cost of all taken switch types to 0.

If there are newly taken switch types, go to step 2.

38

The Complete Algorithm

Very similar to Simple Greedy:

1.

o kW N

Set the cost of all switch types not yet taken to seme-smatt-coste:
their starting avalanche cost.

Route all circuits updating avalanche costs.

Find the maximum Usage of all switch types, Usagemqx.
Take all switch types with Usage > Usagemq/6,0 > 1.
Set the cost of all taken switch types to 0.

If there are newly taken switch types, go to step 2.

38

The Complete Algorithm

Very similar to Simple Greedy:

1.

o LA W

Set the cost of all switch types not yet taken to seme-smatt-coste:
their starting avalanche cost.

Route all circuits updating avalanche costs.

Find the maximum Usage of all switch types, Usagemqx.
Take all switch types with Usage > Usagemq/6,0 > 1.
Set the cost of all taken switch types to 0.

If there are newly taken switch types, go to step 2.

More details in the paper

38

Experimental Results

Experimental Setup

6-LUT,

6-LUT,
H1

H1T —//— pum——

W — = 6—|_UT5

H4 —=— E———

H6

6-LUT,

i —— ==—| 6-LUT;

6-LUT,

6-LUT,

6-LUT,

39

Experimental Setup

6-LUT,

6-LUT,
H1

Hl —/—— p——

e —=— = 6-LUT, SB defined at LUT level

H4 —=— E———

H6
‘*‘*ﬁq‘*‘* SB | 6-LUT,

Vi — = 6'LUT3

6-LUT,

6-LUT,

6-LUT,

39

Experimental Setup

6-LUT,

6-LUT,
H1

H1T —//— ——

e —— e 6-LUT, SB defined at LUT level

H4 —=—

H6 —

=5 \§ SB | 6-LUT, Switches allowed between adjacent LUTs

==\ 6-LUT;

6-LUT,

6-LUT,

6-LUT,

39

Experimental Setup

6-LUT,

6-LUT,

6-LUT:

6-LUT,

6-LUT,

6-LUT,

6-LUT,

6-LUT,

SB defined at LUT level
Switches allowed between adjacent LUTs

564 potential switch types

39

Comparison with Greedy

avalanche greedy
#iterations 63 228
#switches 93 438

ﬁavg anvg tavg [ps] ﬁan anVg tan [pS]

H1 5 5 14.5) 31 25 23.1
H2 5 5 17.8| 28 28 31.6
H4 8 7 259 21 27 43.2
H6 6 6 3491 19 25 59.6
V1 7 7 222 38 31 35.5
V4 5 8 717 12 27 97.5

W(tile) 6816 nm 8904 nm
CPD 1.40 ns 1.71 ns

40

Comparison with Greedy

avalanche greedy
#iterations 63 228
#switches

ﬁavg anvg tavg [ps] ﬁan anVg tan [pS]

H1 5 5 14.5) 31 25 23.1
H2 5 5 17.8| 28 28 31.6
H4 8 7 259 21 27 43.2
H6 6 6 3491 19 25 59.6
V1 7 7 222 38 31 35.5
V4 5 8 717 12 27 97.5

W(tile) 6816 nm 8904 nm
CPD 1.40 ns 1.71 ns

40

Comparison with Greedy

avalanche greedy

#iterations 63 228
#switches 93 438

ﬁavg anvg tavg [ps] ﬁavg anVg tavg [ps]
H1 5 5 14.51 31 25 23.1
H2 5 5 17.8] 28 28 31.6
H4 8 7 259 21 27 43.2
H6 6 6 3491 19 25 59.6
Vi1 7 7 2221 38 31 35.5
V4 5 8 71.71 12 27 97.5

W(tile) 6816 nm 8904 nm
CPD 1.40 ns 1.71 ns

40

Comparison with Greedy

avalanche greedy
#iterations 63 228
#switches 93 438

ﬁavg anvg tavg [ps] ﬁan anVg tan [pS]

H1 5 5 14.5) 31 25 23.1
H2 5 5 17.8| 28 28 31.6
H4 8 7 259 21 27 43.2
H6 6 6 3491 19 25 59.6
V1 7 7 222 38 31 35.5
V4 5 8 717 12 27 97.5

W(tile) 6816 nm 8904 nm
CPD | 1.40 ns| | 1.71 nsl

40

Comparison with Greedy

avalanche truncated greedy

#iterations 63 62
#switches

ﬁavg anvg tavg [ps] ﬁavg foavg tavg [ps]
H1 5 14.5 6 4 14.3
H2 5 5 17.8 7 6 18.4
H4 8 7 25.9 4 7 26.4
H6 6 6 34.9 2 7 35.9
V1 7 7 22.2 10 7 22.0
V4 5 8 71.7 2 5 67.8
Witile) 6816 nm 7368 nm

CPD 1.40 ns 1.41 ns

40

Comparison with Greedy

avalanche truncated greedy

#iterations 63 62
#switches 93 92

ﬁavg anvg tavg [ps] ﬁavg anVg tavg [ps]
H1 5 5 14.5 6 4 14.3
H2 5 5 17.8 7 6 18.4
H4 8 7 25.9 4 7 26.4
H6 6 6 34.9 2 7 35.9
V1 7 7 22.2 10 7 22.0
V4 5 8 71.7 2 5 67.8
Witile) 6816 nm 7368 nm
CPD 1.40 ns 1.41 ns

40

Comparison with Greedy

avalanche truncated greedy

#iterations 63 62
#switches 93 92

ﬁavg anvg tavg [ps] ﬁavg foavg tavg [ps]
H1 5 14.5 6 4 14.3
H2 5 5 17.8 7 6 18.4
H4 8 7 25.9 4 7 26.4
H6 6 6 34.9 2 7 35.9
V1 7 7 22.2 10 7 22.0
V4 5 8 71.7 2 5 67.8
Witile) 6816 nm 7368 nm

CPD

40

ices

Cho

on

)
(O]
=
Q
n
=
O]
=
=
(Vp)

Avalanche vs Greedy

truncated greedy

GME 0 1 0 1 0 0 0 03 020

avalanche

GV 1 1 1 1 0 0 0 0 2110

Gy 1 0 0 0 0 0 0 0 20 2O

GpjBE 2 0 1 0 0 0 001010

'R 1 1 1 0 0000 2010

IR 1 0 1 000 0O0 1110

& 1 1 1 1 0 0 0 01 01O

& 1 0 1 1 0 0 0 01 01O

GIE 0 0 0 0 1 0 0 0/4 1 3 O

GIE 0 0 0 0 1 1 2 131 2 0

GPE 0 0 0 0 2 0 0 0 2 1 1 O

GPE 0 0 0 0 1 0 0 0 1 1 1 O

Qe 0 0 0 0 2 1 1 0 2 1 1 O

Qg 0 0 0 0 1 1 1 1 1 1 1 1

G 0 0 0 0 1 1 1 1 2 0 1 O

G0 0 0 0 01 1 1 1 1 10

WlE 4 2 1 04 2 104100

Mg 2 1 1 1 2 1112100

(WG 1 1 0 0 1 1 101000

\WZ§ 1 0 0 0 1 0 1 1 1 10 O

bE 2 1 0 0 2 1 1 1 0 0 2 O

WbhE2 1 1 1 2 11100 21

(WHhE 1 1 0 0 0 0 000 O 1O

ZHhE 1 1 1 1 1 1 1100 10

\Zs]
V1D

41

Avalanche vs Greedy: Switch Selection Choices

avalanche truncated greedy
H1LA p) 1 H1LA 3 N 2
H2L A 1 H2L A
H4L 1 H4L 1 2
H6L - H6L 1
HIR - H1R II

H2R 5 1 H2R ¢ 2
H4R 4 1 H4R ¢ 2

H6R -+ H6R 1

viu N viu 2

V4u - V4U 1

V1D - V1D

V4D - V4D 4
ITIIIITIIC<CECSCS ITIIIIIIC<C<ECSCT
P NBNOBRNADMOHESLSRESLN P NBORNBOOESED
r - OO XX »X»®®»XCcCCcCOOo [l o] X C©C cC OO

41

Avalanche vs Greedy: Switch Selection Choices

avalanche truncated greedy

41

Avalanche vs Greedy: Routability

10 Gnl circuits
Rent's exponent = 0.7

10k LUT

avalanche 147 | 145157 |73 | 56|71(82|59| 65|74
trunc. greedy | —| —| —| —1[278| —| —| —|149| —

42

Avalanche vs Greedy: Routability

10 Gnl circuits
Rent's exponent = 0.7

10k LUT

avalanche 147 | 145157 | 73 BESYel 71 | 82 | 59 ER 74
trunc. greedy | —| —| —| 2R — | — | — PEER —

42

Comparison with Simulated Annealing

Inspired by M. Lin, J. Wawrzynek, and A. El Gamal,
“Exploring FPGA routing architecture stochastically”, TCAD'10

43

Pattern

ing: Starting

G
Q
c
c
<
©
Q
o+
1
>
£
(Vp)]
e
)

ison wi

Compar

ISFPGA'21

CMBEN 2 2 2 0 00 0/2 2 2 2

avalanche

GME 1 1 1 1 0 000 2110

QP& 2 1 1 1 00 00 2 1 21

GpJE2 0 1 0 0 0001010

Qrig 2 1 1 1 0 0 0 0 2 1 2 1

QiR 1 0 1 0 0 0 001110

fE 2 1 1 100002121

& 1 0 1 1 0 0 0 01 01O

e o0 0o o o2 2 2 2 2 2 2

G 0 0 0 0 1 1 2 1 3 1 20

GPE 0 0 0 0 2 1 1 1 2 1 2 1

Qg 0 0 0 0 2 1 1 1

Gp® 0 0 0 0 1 0 0 01 110

GEg 0 0 0 0 1 1 1 1 1 1 1 1

GELE 0 0 0 0 2 1 1 1

G 0 0 0 0 01 111110

\UiE 2 2 2 2 2 2 2 2

BUE 2 1 1 1 2 1112100

\ZBE 2 1 1 1 2 1 1 1

\WOE 1 0 0 01 01 11100

(WBHBE 2 2 2 2 2 2 2 2 0

WhE 2 1 1 1 2 1 1100 2 1

WZhE 2 1 1 1 2 1 1100

(WZhg 1 1 1 1 1 1 1100 10

kei, and P. lenne,

T
“Global is the New Local: FPGA Architecture at 5nm and Beyond”, FPGA'21

F. Catthoor, Z.

1

i

Ie

[1] S. Niko

44

Comparison with Simulated Annealing: Setup

- Each move is an exclusion/inclusion of one of the 564 switch types

45

o
>
+
(¢D)
wm
g
=
©
(¢D)
c
c
<
©
Q
+—
e
>
=
(Vp)
=
=
=
c
o
n
‘=
©
o
&
o
o

- Each move is an exclusion/inclusion of one of the 564 switch types

To be fabricated

Potential switch types

45

o
>
+
(¢D)
wm
g
=
©
(¢D)
c
c
<
©
Q
+—
e
>
=
(Vp)
=
=
=
c
o
n
‘=
©
o
&
o
o

- Each move is an exclusion/inclusion of one of the 564 switch types

To be fabricated

Potential switch types

45

o
>
+
(¢D)
wm
g
=
©
(¢D)
c
c
<
©
Q
+—
e
>
=
(Vp)
=
=
=
c
o
n
‘=
©
o
&
o
o

- Each move is an exclusion/inclusion of one of the 564 switch types

To be fabricated

Potential switch types

45

o
>
+
(¢D)
wm
g
=
©
(¢D)
c
c
<
©
Q
+—
e
>
=
(Vp)
=
=
=
c
o
n
‘=
©
o
&
o
o

- Each move is an exclusion/inclusion of one of the 564 switch types

To be fabricated

Potential switch types

45

o
>
+
(¢D)
wm
g
=
©
(¢D)
c
c
<
©
Q
+—
e
>
=
(Vp)
=
=
=
c
o
n
‘=
©
o
&
o
o

- Each move is an exclusion/inclusion of one of the 564 switch types

To be fabricated

Potential switch types

45

o
>
+
(¢D)
wm
g
=
©
(¢D)
c
c
<
©
Q
+—
e
>
=
(Vp)
=
=
=
c
o
n
‘=
©
o
&
o
o

- Each move is an exclusion/inclusion of one of the 564 switch types

To be fabricated

Potential switch types

= f(CPD, tile area)

- cost function

45

Outcome

ing:

G
(<D}
c
c
<
©
(<D}
1
>
£
(Vp)]
e
=

ison wi

Compar

annealed

R 3 3 1 00 0 O3 2 1

ISFPGA'21

GBIl 2 2 2000 0/[22 22

avalanche

GME 1 1 1 1 00002110

GpIE 2 1 1 100002121 QP 0 2 2 1 0 0 0 01 1 2 1

GpJ®2 0 1 0 0 00 01010

QriE3 1 2 2 00001021
(&2 0 1 0 000 0 1

ik 2 1 1100002121

Qi1 0 1 0000O0O1T110

jE 2 1 1100002121

GEE 1 0 1 1 0 00 01010

LR o0 0 o o5l 13 2 &)

GPIE 0 0 0 0 0 1 2 1 3

ko o o o2 2 2 2 2 2 2

IR 0 0 0 0 1 1 213120

GPIE 0 0 0 0 2 1 1 1 2 1 2 1

GPE 0 0 0 0 1 0 0 0 1 1 1 O

Qg 0 0 0 0 2 1 1 1 2 1 2 1 Eg 0 0 0 03 1 2 011 2 1

Eg 0 0 0 0 1 1 1 1 1 1 1 1

GE® 0 0 0 0 2 1 112121 GO0 0 0 0 2 3 12 42 21

GO0 0 0 001 111110

GOREl 1 32 4 14100512 0 0

GE2 2 2 222 2 2[ff2 0 0

\ZOg 2 1 1 1 2 1112100

MR 2 1 1 1 2 1112100

WZOE3 2 2 1 2 1113300

WOE 1 0 0 01 0111100

LR 3 4 1g511 1 0020

UhE2 2 2 222 2 2 0 0|2

ZhE 2 1 1 1 2 11100 21

WhHE 2 1 1 1 2 1 1100 21

(WhE 1 2 0 0 2 1 1 2 0 0 1 1

ZhE 1 1 1 1 1 1110010

+ 30 switches

46

Comparison with Simulated Annealing: Outcome

avalanche initial annealed
#switches 93 180 210
ﬁavg anvg tavg [ps] ﬁavg fOavg tavg [ps] ﬁavg anvg tavg [ps]
H1 5 5 1451 10 10 16.0] 13 13 19.6
H2 5 5 17.8| 11 11 2131 14 11 24.1
H4 8 7 259(11 11 30.8| 16 12 32.1
H6 6 6 349| 11 11 43.1 9 13 473
V1 7 7 2221 12 12 246 14 15 29.2
V4 5 8 7171 13 13 7431 13 15 86.8
W(tile) 6816 nm 7464 nm 7488 nm
CPD |1.40 ns| 1.46 ns |1.55 ns|

+10.7%

47

Simulated Annealing: Convergence

220 11.25

200 11.00

180" — #switches 10.75

160+ —— CPD [ns] t0.50
—— Atile) [um2]

140 10.25

0.00

0 2000 4000 6000 8000 10000
move

48

Conclusions and Future Work

Conclusions

FPGA routers can efficiently
explore switch-block patterns

49

Future Work

Avalanche costs can be attributed to any node in any graph

50

Future Work

Avalanche costs can be attributed to any node in any graph

— use them to explore the entire routing architecture at once

50

Thank you for attention

https://github.com/EPFL-LAP/fpl21-avalanche

https://github.com/EPFL-LAP/fpl21-avalanche

	one
	Introduction

	two
	Automated Switch-Pattern Exploration
	A Quick Recap on FPGA Routers
	Negotiating Switch Presence
	Avalanche Costs (Key Idea)
	Experimental Results
	Conclusions and Future Work

