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Field-Programmable Gate Array
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Price of Programmability: Switch Block MUX
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Price of Programmability: Connection Block MUX
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Price of Programmability: Crossbar MUX
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Many MUXes =⇒ Large Delay
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Direct Connections: Switch Block-to-Switch Block
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incremental design flow that is based on modular imple-
mentations. Total design time is reduced due to fewer and
shorter design iterations.
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As shown in Figure 48, Virtex-II has fully buffered program-
mable interconnections, with a number of resources
counted between any two adjacent switch matrix rows or
columns. Fanout has minimal impact on the performance of
each net.

Virtex-II 1.5V Field-Programmable Gate Arrays R

Place-and-route software takes advantage of this regular
array to deliver optimum system performance and fast com-
pile times. The segmented routing resources are essential
to guarantee IP cores portability and to efficiently handle an

incremental design flow that is based on modular imple-
mentations. Total design time is reduced due to fewer and
shorter design iterations.

Hierarchical Routing Resources
Most Virtex-II signals are routed using the global routing
resources, which are located in horizontal and vertical rout-
ing channels between each switch matrix.

As shown in Figure 48, Virtex-II has fully buffered program-
mable interconnections, with a number of resources
counted between any two adjacent switch matrix rows or
columns. Fanout has minimal impact on the performance of
each net.
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• The long lines are bidirectional wires that distribute
signals across the device. Vertical and horizontal long
lines span the full height and width of the device.

• The hex lines route signals to every third or sixth block
away in all four directions. Organized in a staggered
pattern, hex lines can only be driven from one end.
Hex-line signals can be accessed either at the endpoints
or at the midpoint (three blocks from the source).

• The double lines route signals to every first or second
block away in all four directions. Organized in a
staggered pattern, double lines can be driven only at
their endpoints. Double-line signals can be accessed
either at the endpoints or at the midpoint (one block
from the source).

• The direct connect lines route signals to neighboring
blocks: vertically, horizontally, and diagonally.

• The fast connect lines are the internal CLB local
interconnections from LUT outputs to LUT inputs.

Dedicated Routing
In addition to the global and local routing resources, dedi-
cated signals are available.
• There are eight global clock nets per quadrant (see

Global Clock Multiplexer Buffers).
• Horizontal routing resources are provided for on-chip

3-state busses. Four partitionable bus lines are
provided per CLB row, permitting multiple busses
within a row. (See 3-State Buffers.)

• Two dedicated carry-chain resources per slice column
(two per CLB column) propagate carry-chain MUXCY
output signals vertically to the adjacent slice. (See
CLB/Slice Configurations.)

Figure 48: Hierarchical Routing Resources
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• The fast connect lines are the internal CLB local
interconnections from LUT outputs to LUT inputs.

Dedicated Routing
In addition to the global and local routing resources, dedi-
cated signals are available.
• There are eight global clock nets per quadrant (see

Global Clock Multiplexer Buffers).
• Horizontal routing resources are provided for on-chip

3-state busses. Four partitionable bus lines are
provided per CLB row, permitting multiple busses
within a row. (See 3-State Buffers.)

• Two dedicated carry-chain resources per slice column
(two per CLB column) propagate carry-chain MUXCY
output signals vertically to the adjacent slice. (See
CLB/Slice Configurations.)
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Direct Connections: Cluster-to-Cluster
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Direct Connections: LUT-to-LUT
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3.1.3 Carry Chains. A signif cant portion of Ultra
carry logic is removed in Versal and absorbed in
the new cascade paths (see Figure 7). Dedicated
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NTRODUCTION
ll known that the benef ts of process technology scaling are
g [1]. The benef tsof a new technology node alone are often

cient to justify the development costsof a next generation
forcing moreaggressive innovationsat thearchitectural and
levels [2, 3]. With the recent explosion of data and surge

hine learning and AI applications, the needs for compute

Figure 1: Metal and Transistor Delays For a Quad Routing
Resource AcrossDif erent Technology Nodes(normalized to
total delay at 28nm)

virtue of their conf gurable nature, f eld-programmable gate arrays
excel in applications with varying workloads and requirements,
circumventing the economic challenges of heterogeneous compute
platforms with reconf gurable hardware [4]. FPGA platforms have
recently been deployed on the cloud to democratize these systems
at a larger scale [5–8].

Many compute intensive solutions today operate in a thermal
envelope and are thuspower limited. Although power and delay
per operation drop with technology scaling, they no longer drop
at a rate that satisf esexponentially increasing compute demands.
Metal resistance is another critical challenge that has worsened
with technology scaling [9]. Although wire distancesshrink with
lithography, wire cross-sectional area shrinks quadratically, result-
ing in a net increase in resistance each generation. Hence, even
though transistor delays continue to decrease with smaller transis-
tors, total path delays may not. In Figure 1, we show the minimum
wire pitch delay of an interconnect routing resource over several

separated in placement by lessthan or equal to a distance of 5, in
Versal we f nd 21.5% more candidatesto merge than in UltraScale,
thus increasing logic per unit area accordingly.
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3.1.3 Carry Chains. A signif cant portion of UltraScale’sdedicated
carry logic is removed in Versal and absorbed into the LUT using
the new cascade paths (see Figure 7). Dedicated carry logic area
as a result reduced by a factor of 5 while keeping long carry chain
speeds constant (comparing both at 7nm). Elimination of these
dedicated carry signalsalso led toareduction in CLB output muxing
costs since LUT outputs double as both generic LUT function and
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Direct Connections: Two Questions

1. Where to put them?
(metal and area cost, increased capacitive loading, etc.)

Our work at FPGA’20

2. How to use them effectively?

This work
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Target Architectures



• LUT-to-LUT connections

• Can span multiple clusters

• Optionally used =⇒
keeps all the flexibility of the
programmable interconnect
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FPGA’20: Swapping LUTs within Clusters
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FPGA’20: Delay Improvement due to Direct Connections
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FPGA’20: Missed Opportunities
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FPGA’20: Missed Opportunities

How much could we gain?
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FPGA’20: Missed Opportunities

τ = ⟨td(u, v)⟩,

∀(u, v) : (u, v) is a direct connection

∼ 19% lower geomean delay
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FPGA’20: Missed Opportunities

Unlikely to meet in practice...

But, leaves a big
margin for improvement
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FPGA’20: Missed Opportunities
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General Approach



Placing Clusters is not Sufficient
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General Approach

Flat placement of LUTs

An order of magnitude more
placeable objects and placement positions
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Generic vs Dedicated Placement

Actual due to VPR

Delay improvement over initial random placement
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Generic vs Dedicated Placement
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direct connections

Delay improvement over initial random placement
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When to Consider Direct Connections?

Complete Dedicated Placer Placement optimized
for direct connections

netlist
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Placement Algorithm



Timing-Driven Detailed Placement

0. All nodes (LUTs) are assigned a starting position

1. Select a subset of nodes

2. Move them to reduce the critical path delay
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Which Nodes to Move?



Determining Movable Nodes: Sliding Window
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Determining Movable Nodes: Sliding Window
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Determining Movable Nodes: Sliding Window
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Determining Movable Nodes: Critical Path
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Movement Constraints
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• Each node can move to any position in the
w-bounded square around its starting cluster

• Overlaps with stationary nodes removed by
postprocessing
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Improving Connection Delays

Each circuit connection (u, v) has initial delay τu,v
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Improving Connection Delays

Implementing by a direct connection can improve it
by 0 ⩽ impu,v ⩽ Iu,v = const.

26



Improving Connection Delays

A

B

C D

E

3
5

5

2 2

5 LUT1

LUT2

LUT3

LUT1

LUT3

LUT1

LUT3

LUT1

LUT2

LUT3

LUT2 LUT2

1

2

Delay after generic placement (     )

26



Improving Connection Delays

Fastest direct connection that can be used
A

B

C D

E

3
5  1

5

2 2

5 LUT1

LUT2

LUT3

LUT1

LUT3

LUT1

LUT3

LUT1

LUT2

LUT3

LUT2 LUT2

1

2

Delay after generic placement (     )

26



Improving Connection Delays

Fastest direct connection that can be used
A

B

C D

E

2
5  1 = 4

4

1 1

0 LUT1

LUT2

LUT3

LUT1

LUT3

LUT1

LUT3

LUT1

LUT2

LUT3

LUT2 LUT2

1

2

Delay after generic placement (     )

-

Maximum improvement (I)

26



Improving Connection Delays

1. Assign imp-variables values, s.t. critical path delay ⩽ some target D

2. All nodes incident to an edge with imp ̸= 0 are movable

min |{(u, v) : impu,v ̸= 0}|
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Improving Connection Delays: An Example

Two critical paths with delay 10

One path with delay 7
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Improving Connection Delays: Selection LP

1. ... s.t. critical path delay ⩽ D

2. ...

min |{(u, v) : impu,v ̸= 0}|

min
∑

(u,v) impu,v

s.t. tu,v = τu,v − impu,v

tav ⩾ tau + tu,v

tau ⩽ tamax

tamax ⩽ D
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Improving Connection Delays: Selection LP

min
∑

(u,v) impu,v

s.t. tu,v = τu,v − impu,v

tav ⩾ tau + tu,v

tau ⩽ tamax

tamax ⩽ D

1Hambrusch and Tu, “Edge weight reduction problems in directed acyclic graphs”, J. Algorithms, 1997
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Determining Movable Nodes: Selection LP

30



How to Move the Selected Nodes?



Different Options

Heuristic Methods:

...

...

...

Exact Methods:

SAT

SMT

ILP
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Naive ILP: Describing a Particular Placement

Cluster position: c = (x, y)

LUT position: p = (x, y, i)

Introduce: xu,p ∈ {0, 1}

x

y

0
1
2
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Naive ILP: Describing a Particular Placement

Cluster position: c = (x, y)

LUT position: p = (x, y, i)

Introduce: xu,p ∈ {0, 1}
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Naive ILP: Describing a Particular Placement

Cluster position: c = (x, y)

LUT position: p = (x, y, i)

Introduce: xu,p ∈ {0, 1}
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Naive ILP: Describing a Particular Placement

Cluster position: c = (x, y)

LUT position: p = (x, y, i)

Introduce: xu,p ∈ {0, 1}, ∀p ∈ P(u,w)
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P(A, 1)
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Naive ILP: Describing Any Legal Placement

No overlaps between movable nodes:∑
u∈Vm xu,p ⩽ 1, ∀p

Each node uniquely placed:∑
p∈P(u,w) xu,p = 1,∀u
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Naive ILP: Timing

Arrival times: same as Selection LP

Connection delay: tu,v =
∑

pu∈P(u,w),pv∈P(v,w)
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Naive ILP: Encoding Efficiency
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(2w + 1)2N ((2w + 1)2N)2
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An Example Target Architecture (FPGA’20)
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An Example Target Architecture (FPGA’20)

w = 3

w
 =

 3
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Naive ILP: Encoding Efficiency

490 240,100
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Improved ILP
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Improved ILP

tu,v =
∑

E τpu,pvxu,puxv,pv

tu,v =
∑

Ed τpu,pvxu,puxv,pv

+
∑

Ep τcu,cvxu,cuxv,cv

((2w + 1)2N)2
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Complete Flow



Solve Placement ILP

Solve Selection LP

Remove Overlaps1

target delay

generic placement

dedicated placement

bi
na

ry
 s

ea
rc

h

1Darav et al., “Multi-commodity flow-based spreading in a commercial analytic placer”, FPGA’19



Experimental Setup



Almost the same as FPGA’20

• Architecture: best found in FPGA’20
• 14 direct connections, all crossing clusters
• 10 6-LUT cluster
• inputs
• Complete crossbar
• No carry chains

• VTR 7, with Rubin and DeHon’s delay targeted routing
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Route-time LUT Permutation

LUT LUTLUTLUT

Fixed
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Route-time LUT Permutation

LUTLUT LUT LUT

Permutable
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Results



w = 1 vs w = 0 Delay Change over Baseline: Postplacement
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w = 1 vs w = 0 Delay Change over Baseline: Postrouting
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w = 1 Delay Change over Baseline, all Programmable
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Conclusions

We now have an effective dedicated placer for
architectures with direct connections
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Future Work

Address scalability issues to extend movement freedom

Or allocate the existing freedom more wisely

48



Future Work

Address scalability issues to extend movement freedom

Or allocate the existing freedom more wisely

48



sha

or1
20
0

blo
b_m

erg
e

LU
8P
EE
ng
dif
feq

2
dif
feq

1

bo
un
dto

p

ste
reo

vis
ion

0

mk
SM

Ad
ap
ter

4B bg
m

mk
De
lay

Wo
rke

r32
B

ch
_in

trin
sic
s

ray
ge
nto

p

8

7

6

5

4

3

2

1

0

1

[%
]

3%?



sha

or1
20
0

blo
b_m

erg
e

LU
8P
EE
ng
dif
feq

2
dif
feq

1

bo
un
dto

p

ste
reo

vis
ion

0

mk
SM

Ad
ap
ter

4B bg
m

mk
De
lay

Wo
rke

r32
B

ch
_in

trin
sic
s

ray
ge
nto

p

8

7

6

5

4

3

2

1

0

1

[%
]

3%?

7%?



sha

or1
20
0

blo
b_m

erg
e

LU
8P
EE
ng
dif
feq

2
dif
feq

1

bo
un
dto

p

ste
reo

vis
ion

0

mk
SM

Ad
ap
ter

4B bg
m

mk
De
lay

Wo
rke

r32
B

ch
_in

trin
sic
s

ray
ge
nto

p

8

7

6

5

4

3

2

1

0

1

[%
]

3%?

7%?
12%?



LUT LUT LUT

40

Denser packing + no local direct connections
=⇒ less chance for optimization
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Future Work

Address scalability issues to extend movement freedom

Or allocate the existing freedom more wisely

Extensive architectural exploration
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Thank you for attention
https://github.com/stefannikolicns/fpl20-placement

https://github.com/stefannikolicns/fpl20-placement
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