
Timing-Driven Placement for FPGA Architectures
with Dedicated Routing Paths

S. Nikolić, G. Zgheib*, and P. Ienne
FPL’20, Göteborg, 01.09.2020

École Polytechnique Fédérale de Lausanne
*Intel Corporation

Field-Programmable Gate Array

CLB CLB

CLB

CLB

CLB

CLB CLB

CLB

CLB

SB SB

SB SB

2

Price of Programmability: Switch Block MUX

CLB CLB

CLB

CLB

CLB

CLB CLB

CLB

CLB

SB SB

SB SBSB

3

Price of Programmability: Connection Block MUX

CLB CLB

CLB

CLB

CLB

CLB CLB

CLB

CLB

SB SB

SB SB

LUT

K
 I

4

Price of Programmability: Crossbar MUX

CLB CLB

CLB

CLB

CLB

CLB CLB

CLB

CLB

SB SB

SB SB

LUT

K
 I

5

Many MUXes =⇒ Large Delay

CLB

CLB

CLB

CLB

CLB

CLB

CLB

SB

LUT

LUT

6

Direct Connections: Switch Block-to-Switch Block

R

ar
m-
al

an

incremental design flow that is based on modular imple-
mentations. Total design time is reduced due to fewer and
shorter design iterations.

ng
ut-

As shown in Figure 48, Virtex-II has fully buffered program-
mable interconnections, with a number of resources
counted between any two adjacent switch matrix rows or
columns. Fanout has minimal impact on the performance of
each net.

Virtex-II 1.5V Field-Programmable Gate Arrays R

Place-and-route software takes advantage of this regular
array to deliver optimum system performance and fast com-
pile times. The segmented routing resources are essential
to guarantee IP cores portability and to efficiently handle an

incremental design flow that is based on modular imple-
mentations. Total design time is reduced due to fewer and
shorter design iterations.

Hierarchical Routing Resources
Most Virtex-II signals are routed using the global routing
resources, which are located in horizontal and vertical rout-
ing channels between each switch matrix.

As shown in Figure 48, Virtex-II has fully buffered program-
mable interconnections, with a number of resources
counted between any two adjacent switch matrix rows or
columns. Fanout has minimal impact on the performance of
each net.

24 Horizontal Long Lines
24 Vertical Long Lines

120 Horizontal Hex Lines
120 Vertical Hex Lines

40 Horizontal Double Lines
40 Vertical Double Lines

16 Direct Connections
(total in all four directions)

res that distribute
and horizontal long

• The fast connect lines are the internal CLB local
interconnections from LUT outputs to LUT inputs

Figure 48: Hierarchical Routing Resources

e Lines
ines

ns
tions)

DS031_60_110200

Module 2 of 4 www.xilinx.com DS031-2 (v1.9) November 29, 2001
78 1-800-255-7778 Advance Product Specification

• The long lines are bidirectional wires that distribute
signals across the device. Vertical and horizontal long
lines span the full height and width of the device.

• The hex lines route signals to every third or sixth block
away in all four directions. Organized in a staggered
pattern, hex lines can only be driven from one end.
Hex-line signals can be accessed either at the endpoints
or at the midpoint (three blocks from the source).

• The double lines route signals to every first or second
block away in all four directions. Organized in a
staggered pattern, double lines can be driven only at
their endpoints. Double-line signals can be accessed
either at the endpoints or at the midpoint (one block
from the source).

• The direct connect lines route signals to neighboring
blocks: vertically, horizontally, and diagonally.

• The fast connect lines are the internal CLB local
interconnections from LUT outputs to LUT inputs.

Dedicated Routing
In addition to the global and local routing resources, dedi-
cated signals are available.
• There are eight global clock nets per quadrant (see

Global Clock Multiplexer Buffers).
• Horizontal routing resources are provided for on-chip

3-state busses. Four partitionable bus lines are
provided per CLB row, permitting multiple busses
within a row. (See 3-State Buffers.)

• Two dedicated carry-chain resources per slice column
(two per CLB column) propagate carry-chain MUXCY
output signals vertically to the adjacent slice. (See
CLB/Slice Configurations.)

Figure 48: Hierarchical Routing Resources

8 Fast Connects

DS031_60_110200

www.xilinx.com DS031-2 (v1.9) November 29, 2001
1-800-255-7778 Advance Product Specification

res that distribute
and horizontal long

h of the device.
y third or sixth block
ed in a staggered
n from one end.
ither at the endpoints

m the source).
every first or second
rganized in a
n be driven only at
s can be accessed
idpoint (one block

nals to neighboring
diagonally.

• The fast connect lines are the internal CLB local
interconnections from LUT outputs to LUT inputs.

Dedicated Routing
In addition to the global and local routing resources, dedi-
cated signals are available.
• There are eight global clock nets per quadrant (see

Global Clock Multiplexer Buffers).
• Horizontal routing resources are provided for on-chip

3-state busses. Four partitionable bus lines are
provided per CLB row, permitting multiple busses
within a row. (See 3-State Buffers.)

• Two dedicated carry-chain resources per slice column
(two per CLB column) propagate carry-chain MUXCY
output signals vertically to the adjacent slice. (See
CLB/Slice Configurations.)

Figure 48: Hierarchical Routing Resources
DS031_60_110200

w.xilinx.com DS031-2 (v1.9) November 29, 2001
00-255-7778 Advance Product Specification

g

ts

d

• The fast connect lines are the internal CLB local
interconnections from LUT outputs to LUT inputs.

Dedicated Routing
In addition to the global and local routing resources, dedi-
cated signals are available.
• There are eight global clock nets per quadrant (see

Global Clock Multiplexer Buffers).
• Horizontal routing resources are provided for on-chip

3-state busses. Four partitionable bus lines are
provided per CLB row, permitting multiple busses
within a row. (See 3-State Buffers.)

• Two dedicated carry-chain resources per slice column
(two per CLB column) propagate carry-chain MUXCY
output signals vertically to the adjacent slice. (See
CLB/Slice Configurations.)

chical Routing Resources
DS031_60_110200

CLB

CLB

CLB

CLB

CLB

CLB

CLB

SB

LUT

LUT

7

Direct Connections: Switch Block-to-Switch Block

CLB

CLB

CLB

CLB

CLB

CLB

CLB

SB

LUT

LUT

SB

R

ar
m-
al

an

incremental design flow that is based on modular imple-
mentations. Total design time is reduced due to fewer and
shorter design iterations.

ng
ut-

As shown in Figure 48, Virtex-II has fully buffered program-
mable interconnections, with a number of resources
counted between any two adjacent switch matrix rows or
columns. Fanout has minimal impact on the performance of
each net.

Virtex-II 1.5V Field-Programmable Gate Arrays R

Place-and-route software takes advantage of this regular
array to deliver optimum system performance and fast com-
pile times. The segmented routing resources are essential
to guarantee IP cores portability and to efficiently handle an

incremental design flow that is based on modular imple-
mentations. Total design time is reduced due to fewer and
shorter design iterations.

Hierarchical Routing Resources
Most Virtex-II signals are routed using the global routing
resources, which are located in horizontal and vertical rout-
ing channels between each switch matrix.

As shown in Figure 48, Virtex-II has fully buffered program-
mable interconnections, with a number of resources
counted between any two adjacent switch matrix rows or
columns. Fanout has minimal impact on the performance of
each net.

24 Horizontal Long Lines
24 Vertical Long Lines

120 Horizontal Hex Lines
120 Vertical Hex Lines

40 Horizontal Double Lines
40 Vertical Double Lines

16 Direct Connections
(total in all four directions)

res that distribute
and horizontal long

• The fast connect lines are the internal CLB local
interconnections from LUT outputs to LUT inputs

Figure 48: Hierarchical Routing Resources

e Lines
ines

ns
tions)

DS031_60_110200

Module 2 of 4 www.xilinx.com DS031-2 (v1.9) November 29, 2001
78 1-800-255-7778 Advance Product Specification

• The long lines are bidirectional wires that distribute
signals across the device. Vertical and horizontal long
lines span the full height and width of the device.

• The hex lines route signals to every third or sixth block
away in all four directions. Organized in a staggered
pattern, hex lines can only be driven from one end.
Hex-line signals can be accessed either at the endpoints
or at the midpoint (three blocks from the source).

• The double lines route signals to every first or second
block away in all four directions. Organized in a
staggered pattern, double lines can be driven only at
their endpoints. Double-line signals can be accessed
either at the endpoints or at the midpoint (one block
from the source).

• The direct connect lines route signals to neighboring
blocks: vertically, horizontally, and diagonally.

• The fast connect lines are the internal CLB local
interconnections from LUT outputs to LUT inputs.

Dedicated Routing
In addition to the global and local routing resources, dedi-
cated signals are available.
• There are eight global clock nets per quadrant (see

Global Clock Multiplexer Buffers).
• Horizontal routing resources are provided for on-chip

3-state busses. Four partitionable bus lines are
provided per CLB row, permitting multiple busses
within a row. (See 3-State Buffers.)

• Two dedicated carry-chain resources per slice column
(two per CLB column) propagate carry-chain MUXCY
output signals vertically to the adjacent slice. (See
CLB/Slice Configurations.)

Figure 48: Hierarchical Routing Resources

8 Fast Connects

DS031_60_110200

www.xilinx.com DS031-2 (v1.9) November 29, 2001
1-800-255-7778 Advance Product Specification

res that distribute
and horizontal long

h of the device.
y third or sixth block
ed in a staggered
n from one end.
ither at the endpoints

m the source).
every first or second
rganized in a
n be driven only at
s can be accessed
idpoint (one block

nals to neighboring
diagonally.

• The fast connect lines are the internal CLB local
interconnections from LUT outputs to LUT inputs.

Dedicated Routing
In addition to the global and local routing resources, dedi-
cated signals are available.
• There are eight global clock nets per quadrant (see

Global Clock Multiplexer Buffers).
• Horizontal routing resources are provided for on-chip

3-state busses. Four partitionable bus lines are
provided per CLB row, permitting multiple busses
within a row. (See 3-State Buffers.)

• Two dedicated carry-chain resources per slice column
(two per CLB column) propagate carry-chain MUXCY
output signals vertically to the adjacent slice. (See
CLB/Slice Configurations.)

Figure 48: Hierarchical Routing Resources
DS031_60_110200

w.xilinx.com DS031-2 (v1.9) November 29, 2001
00-255-7778 Advance Product Specification

g

ts

d

• The fast connect lines are the internal CLB local
interconnections from LUT outputs to LUT inputs.

Dedicated Routing
In addition to the global and local routing resources, dedi-
cated signals are available.
• There are eight global clock nets per quadrant (see

Global Clock Multiplexer Buffers).
• Horizontal routing resources are provided for on-chip

3-state busses. Four partitionable bus lines are
provided per CLB row, permitting multiple busses
within a row. (See 3-State Buffers.)

• Two dedicated carry-chain resources per slice column
(two per CLB column) propagate carry-chain MUXCY
output signals vertically to the adjacent slice. (See
CLB/Slice Configurations.)

chical Routing Resources
DS031_60_110200

7

Direct Connections: Cluster-to-Cluster

CLB CLB

CLB

CLB

CLB

CLB CLB

CLB

CLB

SB SB

SB SB

LUT

K
 I

LUT

8

Direct Connections: LUT-to-LUT

CLB CLB

CLB

CLB

CLB

CLB CLB

CLB

CLB

SB SB

SB SB

g ,
t area accordingly.

O5

O6

4-LUT

4-LUT

4-LUT

4-LUT

A1 A2 A3 A4

A5

A6

O5_1

O6

O5_2

PROP

cascade_in

cascade_in

A5

0 5 10 15 20 25 30
Merge Radius (Slice Grid Distance)

1.14

1.16

1.18

1.20

V
e

rs
a

l/U
ltr

a
sc

a
le

 D
u

a
l L

U
T

 M
e

rg
e

 C
a

(a) Dual LUT Packing (b) Soft vsHard W i

Figure 6: Comparison between UltraScale

3.1.3 Carry Chains. A signif cant portion of Ultra
carry logic is removed in Versal and absorbed in
the new cascade paths (see Figure 7). Dedicated
as a result reduced by a factor of 5 while keeping

Xilinx Adaptive Compute Acceleration Platform: Versal™
Architecture

Brian Gaide, Dinesh Gaitonde, Chirag Ravishankar, Trevor Bauer
bgaide@xilinx.com,dineshg@xilinx.com,chiragr@xilinx.com,trevor@xilinx.com

Xilinx Inc.

TRACT
paper wedescribeXilinx’sVersal™ AdaptiveComputeAccel-
Platform (ACAP). ACAP is a hybrid compute platform that
integrates traditional FPGA programmable fabric, software

mmable processors and software programmable accelerator
s. ACAP improvesover the programmability of traditional
gurable platforms by introducing newer compute models in
m of software programmable accelerators and by separating
data movement architecture from the compute architecture.

rsal architecture includes a host of new capabilities, includ-
hip-pervasive programmable Network-on-Chip (NoC), Imux
ers, compute shell, more advanced SSIT, adaptive deskew of
clocks, faster conf guration, and other new programmable
ts as well as enhancements to the CLB and interconnect.
cuss these architectural developments and highlight their
otivations and dif erences in relation to traditional FPGA
ctures.

WORDS
Versal, FPGA, Stacked Silicon, SSIT, Adaptable Compute Ac-
on Platform, Math Engine, NoC, FPGA Architecture, FPGA

Xilinx

eference Format:
aide, Dinesh Gaitonde, Chirag Ravishankar, Trevor Bauer. 2019.

Adaptive Compute Acceleration Platform: Versal™ Architecture.
edingsof The2019 ACM/SIGDA International Symposium on Field-

mmableGateArrays(FPGA ’19). ACM, New York, NY, USA, 10 pages.
doi.org/10.1145/3289602.3293906

NTRODUCTION
ll known that the benef ts of process technology scaling are
g [1]. The benef tsof a new technology node alone are often

cient to justify the development costsof a next generation
forcing moreaggressive innovationsat thearchitectural and
levels [2, 3]. With the recent explosion of data and surge

hine learning and AI applications, the needs for compute

Figure 1: Metal and Transistor Delays For a Quad Routing
Resource AcrossDif erent Technology Nodes(normalized to
total delay at 28nm)

virtue of their conf gurable nature, f eld-programmable gate arrays
excel in applications with varying workloads and requirements,
circumventing the economic challenges of heterogeneous compute
platforms with reconf gurable hardware [4]. FPGA platforms have
recently been deployed on the cloud to democratize these systems
at a larger scale [5–8].

Many compute intensive solutions today operate in a thermal
envelope and are thuspower limited. Although power and delay
per operation drop with technology scaling, they no longer drop
at a rate that satisf esexponentially increasing compute demands.
Metal resistance is another critical challenge that has worsened
with technology scaling [9]. Although wire distancesshrink with
lithography, wire cross-sectional area shrinks quadratically, result-
ing in a net increase in resistance each generation. Hence, even
though transistor delays continue to decrease with smaller transis-
tors, total path delays may not. In Figure 1, we show the minimum
wire pitch delay of an interconnect routing resource over several

separated in placement by lessthan or equal to a distance of 5, in
Versal we f nd 21.5% more candidatesto merge than in UltraScale,
thus increasing logic per unit area accordingly.

4-LUT

4-LUT

4-LUT

4-LUT

A1 A2 A3 A4 A5 A6

O5

O6

(a) UltraScale 6LUT

4-LUT

4-LUT

4-LUT

4-LUT

A1 A2 A3 A4

A5

A6

O5_1

O6

O5_2

PROP

cascade_in

cascade_in

A5

(b) Versal 6LUT

Figure 5: 6LUT Comparison between UltraScale and Versal

0 5 10 15 20 25 30
Merge Radius (Slice Grid Distance)

1.14

1.16

1.18

1.20

1.22

V
e

rs
a

l/U
ltr

a
sc

a
le

 D
u

a
l L

U
T

 M
e

rg
e

 C
a

n
d

id
a

te
s

(a) Dual LUT Packing (b) Soft vsHard W ide Function Mux

Figure 6: Comparison between UltraScale and Versal

3.1.3 Carry Chains. A signif cant portion of UltraScale’sdedicated
carry logic is removed in Versal and absorbed into the LUT using
the new cascade paths (see Figure 7). Dedicated carry logic area
as a result reduced by a factor of 5 while keeping long carry chain
speeds constant (comparing both at 7nm). Elimination of these
dedicated carry signalsalso led toareduction in CLB output muxing
costs since LUT outputs double as both generic LUT function and

Session 3: Computing Architectures FPGA 19, February 24–26, 2019, Seaside, CA, USA

LUT

LUT

LUT

I

9

Direct Connections: Two Questions

1. Where to put them?
(metal and area cost, increased capacitive loading, etc.)

Our work at FPGA’20

2. How to use them effectively?

This work

10

Direct Connections: Two Questions

1. Where to put them?
(metal and area cost, increased capacitive loading, etc.)

Our work at FPGA’20

2. How to use them effectively?

This work

10

Direct Connections: Two Questions

1. Where to put them?
(metal and area cost, increased capacitive loading, etc.)

Our work at FPGA’20

2. How to use them effectively?

This work

10

Direct Connections: Two Questions

1. Where to put them?
(metal and area cost, increased capacitive loading, etc.)

Our work at FPGA’20

2. How to use them effectively?

This work

10

Outline

Introduction

Target Architectures

General Approach

Placement Algorithm

Results

11

Target Architectures

• LUT-to-LUT connections

• Can span multiple clusters

• Optionally used =⇒
keeps all the flexibility of the
programmable interconnect

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

SB

LUT

LUT

LUT

LUT

LUT

• LUT-to-LUT connections

• Can span multiple clusters

• Optionally used =⇒
keeps all the flexibility of the
programmable interconnect

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

SB

LUT

LUT

LUT

LUT

LUT

• LUT-to-LUT connections

• Can span multiple clusters

• Optionally used =⇒
keeps all the flexibility of the
programmable interconnect

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

SB

LUT

LUT

LUT

LUT

LUT

• LUT-to-LUT connections

• Can span multiple clusters

• Optionally used =⇒
keeps all the flexibility of the
programmable interconnect

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

SB

LUT

LUT

LUT

LUT

LUT

Motivation

FPGA’20: Swapping LUTs within Clusters

LUT1

LUT2

LUT3

LUT1

LUT3

LUT1

LUT3

LUT1

LUT2

LUT3

BA

A

B

No direct connection between A and B
13

FPGA’20: Swapping LUTs within Clusters

LUT1

LUT2

LUT3

LUT1

LUT3

LUT1

LUT3

LUT1

LUT2

LUT3

LUT2

B

A

A

B

No

Direct connection between A and B
13

FPGA’20: Delay Improvement due to Direct Connections

sha

blo
b_m

erg
e

ray
ge
nto

p

dif
feq

1
dif
feq

2

or1
20
0

ch
_in

trin
sic
s

LU
8P
EE
ng

mk
Pk
tM
erg

e

mk
De
lay

Wo
rke

r32
B

ste
reo

vis
ion

1

ste
reo

vis
ion

0

ste
reo

vis
ion

2

bo
un
dto

p
bg
m

mk
SM

Ad
ap
ter

4B
8

7

6

5

4

3

2

1

0

1

[%
]

14

FPGA’20: Missed Opportunities

LUT1

LUT2

LUT3

LUT1

LUT3

LUT1

LUT3

LUT1

LUT2

LUT3

LUT2

B

A

A

B

C

C
15

FPGA’20: Missed Opportunities

LUT1

LUT2

LUT3

LUT1

LUT3

LUT1

LUT3

LUT1

LUT2

LUT3

LUT2

B

A

A

B

C

C
15

FPGA’20: Missed Opportunities

LUT1

LUT2

LUT3

LUT1

LUT3

LUT1

LUT3

LUT1

LUT2

LUT3

LUT2

B

A

A

B

C

C
15

FPGA’20: Missed Opportunities

LUT1

LUT2

LUT3

LUT1

LUT3

LUT1

LUT3

LUT1

LUT2

LUT3

LUT2

B

A

A

B

C

C
15

FPGA’20: Missed Opportunities

How much could we gain?

16

FPGA’20: Missed Opportunities

τ = ⟨td(u, v)⟩,

∀(u, v) : (u, v) is a direct connection

∼ 19% lower geomean delay

16

FPGA’20: Missed Opportunities

τ = ⟨td(u, v)⟩,

∀(u, v) : (u, v) is a direct connection

∼ 19% lower geomean delay

A

B C

16

FPGA’20: Missed Opportunities

τ = ⟨td(u, v)⟩,

∀(u, v) : (u, v) is a direct connection

∼ 19% lower geomean delay

A

B C

16

FPGA’20: Missed Opportunities

Unlikely to meet in practice...

But, leaves a big
margin for improvement

sha

blo
b_m

erg
e

ray
ge
nto

p

dif
feq

1
dif
feq

2

or1
20
0

ch
_in

trin
sic
s

LU
8P
EE
ng

mk
Pk
tM
erg

e

mk
De
lay

Wo
rke

r32
B

ste
reo

vis
ion

1

ste
reo

vis
ion

0

ste
reo

vis
ion

2

bo
un
dto

p
bg
m

mk
SM

Ad
ap
ter

4B

19

7

6

5

4

3

2

1

0

1

[%
]

17

FPGA’20: Missed Opportunities

Unlikely to meet in practice...

But, leaves a big
margin for improvement

sha

blo
b_m

erg
e

ray
ge
nto

p

dif
feq

1
dif
feq

2

or1
20
0

ch
_in

trin
sic
s

LU
8P
EE
ng

mk
Pk
tM
erg

e

mk
De
lay

Wo
rke

r32
B

ste
reo

vis
ion

1

ste
reo

vis
ion

0

ste
reo

vis
ion

2

bo
un
dto

p
bg
m

mk
SM

Ad
ap
ter

4B

19

7

6

5

4

3

2

1

0

1

[%
]

17

General Approach

Placing Clusters is not Sufficient

LUT1

LUT2

LUT3

LUT1

LUT3

LUT1

LUT3

LUT1

LUT2

LUT3

LUT2

B

A

A

B

C

C

18

Placing Clusters is not Sufficient

LUT1

LUT2

LUT3

LUT1

LUT3

LUT1

LUT3

LUT1

LUT2

LUT3

LUT2

B

A

A

B

C

C

18

General Approach

Flat placement of LUTs

An order of magnitude more
placeable objects and placement positions

19

General Approach

Flat placement of LUTs

An order of magnitude more
placeable objects and placement positions

19

Generic vs Dedicated Placement

Actual due to VPR

Delay improvement over initial random placement

20

Generic vs Dedicated Placement

Actual due to VPR

Potential due to
direct connections

Delay improvement over initial random placement

20

When to Consider Direct Connections?

Complete Dedicated Placer Placement optimized
for direct connections

netlist

21

When to Consider Direct Connections?

Generic Placernetlist
Generically optimized
placement

21

When to Consider Direct Connections?

Generic Placernetlist
Generically optimized
placement

Placement optimized
for direct connections

Dedicated Detailed Placer

21

When to Consider Direct Connections?

Generic Placernetlist
Generically optimized
placement

Placement optimized
for direct connections

Dedicated Detailed Placer

21

Placement Algorithm

Timing-Driven Detailed Placement

0. All nodes (LUTs) are assigned a starting position

1. Select a subset of nodes

2. Move them to reduce the critical path delay

22

Timing-Driven Detailed Placement

0. All nodes (LUTs) are assigned a starting position

1. Select a subset of nodes

2. Move them to reduce the critical path delay

22

Timing-Driven Detailed Placement

0. All nodes (LUTs) are assigned a starting position

1. Select a subset of nodes

2. Move them to reduce the critical path delay

22

Which Nodes to Move?

Determining Movable Nodes: Sliding Window

23

Determining Movable Nodes: Sliding Window

23

Determining Movable Nodes: Sliding Window

23

Determining Movable Nodes: Sliding Window

23

Determining Movable Nodes: Sliding Window

23

Determining Movable Nodes: Critical Path

24

Generalization

Movement Constraints

A
B

D C

J

E

H
G

I

F

K

L

MN
O

P

• Each node can move to any position in the
w-bounded square around its starting cluster

• Overlaps with stationary nodes removed by
postprocessing

25

Movement Constraints

B
D C

J

E

H
G

I

F

K

L

M
O

P

A
N

• Each node can move to any position in the
w-bounded square around its starting cluster

• Overlaps with stationary nodes removed by
postprocessing

25

Movement Constraints

w
 =

 1

w = 1

B
D C

J

E

H
G

I

F

K

L

M
O

P

N
A

• Each node can move to any position in the
w-bounded square around its starting cluster

• Overlaps with stationary nodes removed by
postprocessing

25

Movement Constraints

w
 =

 1

w = 1

B
D C

J

E

G

I

F

K

L

M
O

P

N
A

H
• Each node can move to any position in the
w-bounded square around its starting cluster

• Overlaps with stationary nodes removed by
postprocessing

25

Improving Connection Delays

Each circuit connection (u, v) has initial delay τu,v

26

Improving Connection Delays

Implementing by a direct connection can improve it
by 0 ⩽ impu,v ⩽ Iu,v = const.

26

Improving Connection Delays

A

B

C D

E

3
5

5

2 2

5 LUT1

LUT2

LUT3

LUT1

LUT3

LUT1

LUT3

LUT1

LUT2

LUT3

LUT2 LUT2

1

2

Delay after generic placement ()

26

Improving Connection Delays

Fastest direct connection that can be used
A

B

C D

E

3
5 1

5

2 2

5 LUT1

LUT2

LUT3

LUT1

LUT3

LUT1

LUT3

LUT1

LUT2

LUT3

LUT2 LUT2

1

2

Delay after generic placement ()

26

Improving Connection Delays

Fastest direct connection that can be used
A

B

C D

E

2
5 1 = 4

4

1 1

0 LUT1

LUT2

LUT3

LUT1

LUT3

LUT1

LUT3

LUT1

LUT2

LUT3

LUT2 LUT2

1

2

Delay after generic placement ()

-

Maximum improvement (I)

26

Improving Connection Delays

1. Assign imp-variables values, s.t. critical path delay ⩽ some target D

2. All nodes incident to an edge with imp ̸= 0 are movable

min |{(u, v) : impu,v ̸= 0}|

26

Improving Connection Delays

1. Assign imp-variables values, s.t. critical path delay ⩽ some target D

2. All nodes incident to an edge with imp ̸= 0 are movable

min |{(u, v) : impu,v ̸= 0}|

26

Improving Connection Delays

1. Assign imp-variables values, s.t. critical path delay ⩽ some target D

2. All nodes incident to an edge with imp ̸= 0 are movable

min |{(u, v) : impu,v ̸= 0}|

26

Improving Connection Delays: An Example

Two critical paths with delay 10

One path with delay 7

D = 7

A

B

C D

E

3
5

5

2 2

5

27

Improving Connection Delays: An Example

Two critical paths with delay 10

One path with delay 7

D = 7

A

B

C D

E

3
5

5

2 2

5

27

Improving Connection Delays: An Example

Two critical paths with delay 10
One path with delay 7

D = 7

A

B

C D

E

3
5

5

2 2

5

27

Improving Connection Delays: An Example

Two critical paths with delay 10
One path with delay 7

D = 7

A

B

C D

E

2

1

1

0

0

0

27

Improving Connection Delays: Selection LP

1. ... s.t. critical path delay ⩽ D

2. ...

min |{(u, v) : impu,v ̸= 0}|

min
∑

(u,v) impu,v

s.t. tu,v = τu,v − impu,v

tav ⩾ tau + tu,v

tau ⩽ tamax

tamax ⩽ D

28

Improving Connection Delays: Selection LP

1. ... s.t. critical path delay ⩽ D

2. ...

min |{(u, v) : impu,v ̸= 0}|

min
∑

(u,v) impu,v

s.t. tu,v = τu,v − impu,v

tav ⩾ tau + tu,v

tau ⩽ tamax

tamax ⩽ D

28

Improving Connection Delays: Selection LP

1. ... s.t. critical path delay ⩽ D

2. ...

min |{(u, v) : impu,v ̸= 0}|

min
∑

(u,v) impu,v

s.t. tu,v = τu,v − impu,v

tav ⩾ tau + tu,v

tau ⩽ tamax

tamax ⩽ D

28

Improving Connection Delays: Selection LP

1. ... s.t. critical path delay ⩽ D

2. ...

min |{(u, v) : impu,v ̸= 0}|

min
∑

(u,v) impu,v

s.t. tu,v = τu,v − impu,v

tav ⩾ tau + tu,v

tau ⩽ tamax

tamax ⩽ D

28

Improving Connection Delays: Selection LP

min
∑

(u,v) impu,v

s.t. tu,v = τu,v − impu,v

tav ⩾ tau + tu,v

tau ⩽ tamax

tamax ⩽ D

1Hambrusch and Tu, “Edge weight reduction problems in directed acyclic graphs”, J. Algorithms, 1997
29

Determining Movable Nodes: Selection LP

30

How to Move the Selected Nodes?

Different Options

Heuristic Methods:

...

...

...

Exact Methods:

SAT

SMT

ILP

31

Different Options

Heuristic Methods:

...

...

...

Exact Methods:

SAT

SMT

ILP

31

Different Options

Heuristic Methods:

...

...

...

Exact Methods:

SAT

SMT

ILP

31

Different Options

Heuristic Methods:

...

...

...

Exact Methods:

SAT

SMT

ILP

31

Different Options

Heuristic Methods:

...

...

...

Exact Methods:

SAT

SMT

ILP

31

Different Options

Heuristic Methods:

...

...

...

Exact Methods:

SAT

SMT

ILP

31

Naive ILP: Describing a Particular Placement

Cluster position: c = (x, y)

LUT position: p = (x, y, i)

Introduce: xu,p ∈ {0, 1}

x

y

0
1
2

32

Naive ILP: Describing a Particular Placement

Cluster position: c = (x, y)

LUT position: p = (x, y, i)

Introduce: xu,p ∈ {0, 1}

x

y

0
1
2

c = (2, 1)

32

Naive ILP: Describing a Particular Placement

Cluster position: c = (x, y)

LUT position: p = (x, y, i)

Introduce: xu,p ∈ {0, 1}

x

y

0
1
2

32

Naive ILP: Describing a Particular Placement

Cluster position: c = (x, y)

LUT position: p = (x, y, i)

Introduce: xu,p ∈ {0, 1}

x

y

0
1
2

p = (2, 1, 1)

32

Naive ILP: Describing a Particular Placement

Cluster position: c = (x, y)

LUT position: p = (x, y, i)

Introduce: xu,p ∈ {0, 1}

x

y

0
A
2

32

Naive ILP: Describing a Particular Placement

Cluster position: c = (x, y)

LUT position: p = (x, y, i)

Introduce: xu,p ∈ {0, 1}

x

y

0
A
2

xA, (2, 1, 1) = 1

32

Naive ILP: Describing a Particular Placement

Cluster position: c = (x, y)

LUT position: p = (x, y, i)

Introduce: xu,p ∈ {0, 1}

x

y

0
A
2

xA, (4, 0, 2) = 0

32

Naive ILP: Describing a Particular Placement

Cluster position: c = (x, y)

LUT position: p = (x, y, i)

Introduce: xu,p ∈ {0, 1}, ∀p ∈ P(u,w)

x

y

0
A
2

P(A, 1)

32

Naive ILP: Describing Any Legal Placement

No overlaps between movable nodes:∑
u∈Vm xu,p ⩽ 1, ∀p

Each node uniquely placed:∑
p∈P(u,w) xu,p = 1,∀u

x

y

0
A
2

B

33

Naive ILP: Describing Any Legal Placement

No overlaps between movable nodes:∑
u∈Vm xu,p ⩽ 1, ∀p

Each node uniquely placed:∑
p∈P(u,w) xu,p = 1,∀u

x

y

0
A
2

A

33

Naive ILP: Describing Any Legal Placement

No overlaps between movable nodes:∑
u∈Vm xu,p ⩽ 1, ∀p

Each node uniquely placed:∑
p∈P(u,w) xu,p = 1,∀u

x

y

0

2

A

1

33

Naive ILP: Timing

Arrival times: same as Selection LP

Connection delay: tu,v =
∑

pu∈P(u,w),pv∈P(v,w)

34

Naive ILP: Timing

Arrival times: same as Selection LP

Connection delay: tu,v =
∑

pu∈P(u,w),pv∈P(v,w)τpu,pvxu,puxv,pv

34

Naive ILP: Timing

Arrival times: same as Selection LP

Connection delay: tu,v =
∑

pu∈P(u,w),pv∈P(v,w)τpu,pvxu,puxv,pv

34

Naive ILP: Encoding Efficiency

35

Naive ILP: Encoding Efficiency

(2w + 1)2N

35

Naive ILP: Encoding Efficiency

(2w + 1)2N ((2w + 1)2N)2

35

An Example Target Architecture (FPGA’20)

36

An Example Target Architecture (FPGA’20)

w = 3

w
 =

 3

36

Naive ILP: Encoding Efficiency

490 240,100

37

Improved ILP

u v
(x1, y1, 3)

(x1, y1, 2)

(x1, y1, 1)

(x1, y1, 0)

(x1, y1, 3)

(x1, y1, 2)

(x1, y1, 1)

(x1, y1, 0)

38

Improved ILP

u v
(x1, y1, 3)

(x1, y1, 2)

(x1, y1, 1)

(x1, y1, 0)

(x1, y1, 3)

(x1, y1, 2)

(x1, y1, 1)

(x1, y1, 0)

E

38

Improved ILP

u v
(x1, y1, 3)

(x1, y1, 2)

(x1, y1, 1)

(x1, y1, 0)

(x1, y1, 3)

(x1, y1, 2)

(x1, y1, 1)

(x1, y1, 0)

Ed

38

Improved ILP

u v
(x1, y1, 3)

(x1, y1, 2)

(x1, y1, 1)

(x1, y1, 0)

(x1, y1, 3)

(x1, y1, 2)

(x1, y1, 1)

(x1, y1, 0)

Ed

Ep

38

Improved ILP

u v
(x1, y1, 3)

(x1, y1, 2)

(x1, y1, 1)

(x1, y1, 0)

(x1, y1, 3)

(x1, y1, 2)

(x1, y1, 1)

(x1, y1, 0)

Ed

Ep

xu,pu
xv,pv

38

Improved ILP

u v
(x1, y1, 3)

(x1, y1, 2)

(x1, y1, 1)

(x1, y1, 0)

(x1, y1, 3)

(x1, y1, 2)

(x1, y1, 1)

(x1, y1, 0)

Ed

Ep

xu,pu
xv,pv

xu,cu
xv,cv 38

Improved ILP

u v
(x1, y1, 3)

(x1, y1, 2)

(x1, y1, 1)

(x1, y1, 0)

(x1, y1, 3)

(x1, y1, 2)

(x1, y1, 1)

(x1, y1, 0)

Ed

Ep

xu,pu
xv,pv

xu,cu
xv,cv 38

Improved ILP

tu,v =
∑

E τpu,pvxu,puxv,pv

tu,v =
∑

Ed τpu,pvxu,puxv,pv

+
∑

Ep τcu,cvxu,cuxv,cv

((2w + 1)2N)2

39

Improved ILP

tu,v =
∑

E τpu,pvxu,puxv,pv

tu,v =
∑

Ed τpu,pvxu,puxv,pv

+
∑

Ep τcu,cvxu,cuxv,cv

((2w + 1)2N)2

39

Improved ILP

tu,v =
∑

E τpu,pvxu,puxv,pv

tu,v =
∑

Ed τpu,pvxu,puxv,pv +
∑

Ep τcu,cvxu,cuxv,cv

((2w + 1)2N)2

39

Improved ILP

tu,v =
∑

E τpu,pvxu,puxv,pv

tu,v = y
∑

Ed τpu,pvxu,puxv,pv + (1− y)
∑

Ep τcu,cvxu,cuxv,cv

((2w + 1)2N)2

39

Improved ILP

tu,v =
∑

E τpu,pvxu,puxv,pv

tu,v = y
∑

Ed τpu,pvxu,puxv,pv + (1− y)
∑

Ep τcu,cvxu,cuxv,cv

((2w + 1)2N)2

39

Improved ILP

tu,v =
∑

E τpu,pvxu,puxv,pv

tu,v = y
∑

Ed τpu,pvxu,puxv,pv + (1− y)
∑

Ep τcu,cvxu,cuxv,cv

((2w + 1)2N)2

39

Complete Flow

Solve Placement ILP

Solve Selection LP

Remove Overlaps1

target delay

generic placement

dedicated placement

bi
na

ry
 s

ea
rc

h

1Darav et al., “Multi-commodity flow-based spreading in a commercial analytic placer”, FPGA’19

Experimental Setup

Almost the same as FPGA’20

• Architecture: best found in FPGA’20
• 14 direct connections, all crossing clusters
• 10 6-LUT cluster
• inputs
• Complete crossbar
• No carry chains

• VTR 7, with Rubin and DeHon’s delay targeted routing

Almost the same as FPGA’20

• Architecture: best found in FPGA’20
• 14 direct connections, all crossing clusters
• 10 6-LUT cluster
• 40 inputs
• Complete crossbar
• No carry chains

• VTR 7, with Rubin and DeHon’s delay targeted routing

Almost the same as FPGA’20

• Architecture: best found in FPGA’20
• 14 direct connections, all crossing clusters
• 10 6-LUT cluster
• 40 60 inputs
• Complete crossbar
• No carry chains

• VTR 7, with Rubin and DeHon’s delay targeted routing

Almost the same as FPGA’20

• Architecture: best found in FPGA’20
• 14 direct connections, all crossing clusters
• 10 6-LUT cluster
• 40 60 inputs
• Complete crossbar
• No carry chains

• VTR 7, with Rubin and DeHon’s delay targeted routing

Route-time LUT Permutation

LUT LUTLUTLUT

Fixed
42

Route-time LUT Permutation

LUTLUT LUT LUT

Permutable
42

Results

w = 1 vs w = 0 Delay Change over Baseline: Postplacement

sha

or1
20
0

blo
b_m

erg
e

LU
8P
EE
ng
dif
feq

2
dif
feq

1

bo
un
dto

p

ste
reo

vis
ion

0

mk
SM

Ad
ap
ter

4B bg
m

mk
De
lay

Wo
rke

r32
B

ch
_in

trin
sic
s

ray
ge
nto

p

8

7

6

5

4

3

2

1

0

1

[%
]

43

w = 1 vs w = 0 Delay Change over Baseline: Postrouting

sha

or1
20
0

blo
b_m

erg
e

LU
8P
EE
ng
dif
feq

2
dif
feq

1

bo
un
dto

p

ste
reo

vis
ion

0

mk
SM

Ad
ap
ter

4B bg
m

mk
De
lay

Wo
rke

r32
B

ch
_in

trin
sic
s

ray
ge
nto

p

8

7

6

5

4

3

2

1

0

1

[%
]

44

w = 1 Delay Change over Baseline, all Programmable

sha

or1
20
0

blo
b_m

erg
e

LU
8P
EE
ng
dif
feq

2
dif
feq

1

bo
un
dto

p

ste
reo

vis
ion

0

mk
SM

Ad
ap
ter

4B bg
m

mk
De
lay

Wo
rke

r32
B

ch
_in

trin
sic
s

ray
ge
nto

p
1
0

5

10

15

20

[%
]

45

(7, 6, 8)

(7, 7, 1) (5, 9, 8)

(7, 11, 5)

(4, 9, 8)

(7, 10, 0)

(4, 9, 7)

(7, 8, 5)(7, 6, 6)

(5, 4, 8)

(5, 5, 1)

(4, 7, 1)

(4, 7, 0)

(4, 9, 1)

(5, 9, 5)

(5, 10, 3) (4, 10, 8)

(5, 10, 8)

(4, 6, 9)

(7, 9, 3)

(7, 8, 0)(7, 7, 6)

(5, 8, 7)

(5, 8, 8)(5, 8, 5) (5, 9, 0)

(5, 9, 3)

(4, 10, 0)

(5, 8, 1)

(4, 10, 1)

(5, 7, 8)

(3, 10, 8)

(7, 7, 9)

(4, 8, 8)

(7, 9, 9)

(4, 6, 8)

(4, 3, 9)

(4, 4, 0)

Conclusions

We now have an effective dedicated placer for
architectures with direct connections

47

Future Work

Address scalability issues to extend movement freedom

Or allocate the existing freedom more wisely

48

Future Work

Address scalability issues to extend movement freedom

Or allocate the existing freedom more wisely

48

sha

or1
20
0

blo
b_m

erg
e

LU
8P
EE
ng
dif
feq

2
dif
feq

1

bo
un
dto

p

ste
reo

vis
ion

0

mk
SM

Ad
ap
ter

4B bg
m

mk
De
lay

Wo
rke

r32
B

ch
_in

trin
sic
s

ray
ge
nto

p

8

7

6

5

4

3

2

1

0

1

[%
]

3%?

sha

or1
20
0

blo
b_m

erg
e

LU
8P
EE
ng
dif
feq

2
dif
feq

1

bo
un
dto

p

ste
reo

vis
ion

0

mk
SM

Ad
ap
ter

4B bg
m

mk
De
lay

Wo
rke

r32
B

ch
_in

trin
sic
s

ray
ge
nto

p

8

7

6

5

4

3

2

1

0

1

[%
]

3%?

7%?

sha

or1
20
0

blo
b_m

erg
e

LU
8P
EE
ng
dif
feq

2
dif
feq

1

bo
un
dto

p

ste
reo

vis
ion

0

mk
SM

Ad
ap
ter

4B bg
m

mk
De
lay

Wo
rke

r32
B

ch
_in

trin
sic
s

ray
ge
nto

p

8

7

6

5

4

3

2

1

0

1

[%
]

3%?

7%?
12%?

LUT LUT LUT

40

Denser packing + no local direct connections
=⇒ less chance for optimization

LUT LUT LUT

60

Denser packing

+ no local direct connections
=⇒ less chance for optimization

LUT LUT LUT

60

Denser packing + no local direct connections
=⇒ less chance for optimization

sha

or1
20
0

blo
b_m

erg
e

LU
8P
EE
ng
dif
feq

2
dif
feq

1

bo
un
dto

p

ste
reo

vis
ion

0

mk
SM

Ad
ap
ter

4B bg
m

mk
De
lay

Wo
rke

r32
B

ch
_in

trin
sic
s

ray
ge
nto

p

8

7

6

5

4

3

2

1

0

1

[%
]

?

Future Work

Address scalability issues to extend movement freedom

Or allocate the existing freedom more wisely

Extensive architectural exploration

52

Thank you for attention
https://github.com/stefannikolicns/fpl20-placement

https://github.com/stefannikolicns/fpl20-placement

	one
	Introduction

	two
	Target Architectures
	General Approach
	Placement Algorithm
	Results

