Regularity Matters: Designing Practical FPGA Switch-Blocks

: : Stefan Nikoli¢ and Paolo lenne
I I FPGA'23, Monterey, 13.02.2023

Ecole Polytechnique Fédérale de Lausanne

What is the problem?

A very quick review of Island-Style FPGA architecture

CLB CLB CLB CLB CLB
CLB CLB CLB CLB CLB
CLB CLB CLB CLB CLB

“Islands of LUTS”

A very quick review of Island-Style FPGA architecture

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

“Surrounded by channels of prefabricated wires”

A very quick review of Island-Style FPGA architecture

from LUTs _|—_§ prefabricated wire
[y
wire A

I
|
I from other wires
|
I
I

|
|
,-7 wire B '
|
I
I

“There is a SWITCH between wire A and wire B”

A very quick review of Island-Style FPGA architecture

‘ ‘ thch(A B)

A —

— B

“There is a SWITCH between wire A and wire B”

A very quick review of Island-Style FPGA architecture

SWITCH-BLOCK (SB)

A very quick review of Island-Style FPGA architecture

H ‘4;“1(“

A —

All SBs are identical (e.g.,, one has switch(A, B) = all have them

B

A very quick review of Island-Style FPGA architecture

CLB

‘ CLB

TETEE

All SBs are identical (e.g, one has switch(A, B) = all have them

‘ CLB

What is the problem?

Which switches should the SB have?

What do we expect from a switch-block?

Route many different connections
of many different circuits
with minimal delay

What do we expect from a switch-block?

CLB

CLB

CLB

CLB

£

CLB

CLB

CLB

fully-connected = hops always minimal

What do we expect from a switch-block?

from LUTs ‘5\ prefabricated wire

74

il

from other wires

What do we expect from a switch-block?

from LUTs _l—_g\ prefabricated wire
. c
from other wires _><
S 4

What do we expect from a switch-block?

What do we expect from a switch-block?

So we need

- something sparse
- that still minimizes hops
- allows paths to avoid intersecting (congestion resolution)

What is the problem?

How to make this sparse? (and REGULAR)

Isn’t switch-pattern design a closed problem?

2019 International Conference on Field-Programmable Technology (ICFPT)

A Study on Switch Block Patterns for
Tileable FPGA Routing Architectures

Xifan Tang, Edouard Giacomin, Aurélien Alacchi and Pierre-Emmanuel Gaillardon
University of Utah
Email: xifan.tang@utah.edu

Abstract—Following the rapid growth of Field Programmable
Gate Arrays (FPGAs) sizes, the regularity of architectures has
become a critical feature, leading to the development of million-
of-LUT devices. While the routing architecture plays a dom-
inant role in the area, delay and power of modern FPGAs,
most of previously published works focus on improving the
routability and performance of FPGAs while very few studied
tileable (highly-regular) routing architectures. In this paper, we
provide a detailed analysis between tileable and popular non-
tileable FPGAs considering modern routing architectures. First,
we upgrade VPR to generate tileable routing architecture, which
can support different switch block patterns for (1) the routing
tracks that start/end in a tile and (2) the routing tracks that
pass through a tile. Then, we evaluate the performance of mixed
sw:tch blocks patterns in the context of a Stratix IV-like FPGA
ar e, by idering the most repr ive patterns,
ie., Subset Unlversal and Wilton. Experimental results show
that averaged over the MCNC and VTR benchmarks, when
compared to the 11 i ar es, the
tileable architectures can improve the minimum routable channel
width by 13% and area-delay product by 2%. In particular, our
results showed that in the context of tileable FPGA, a mix of
TTnivercal and Wiltan cwiteh hlack natfernc lead tn the hect frade.

Experimental results show that compared to VPR, our RRG
generator can reduce the number of unique tiles by 8.8x and
5.5x for homogeneous and heterogeneous FPGAs respectively,
even considering 128 x 128 array size.

(2) More than tileable FPGA, our RRG generator also supports
different switch block patterns for (a) the routing tracks that
start/end in a tile and (b) the routing tracks that pass a tile.
We evaluate the performance of mixed switch blocks patterns
in the context of a Stratix IV-like FPGA architecture, by
considering the most representative patterns, i.e., Subset [20],
Universal [19], Wilton [21] and Imran [22]. Experimental results
show that averaged over the MCNC and VTR benchmarks,
when compared to the well-optimized non-tileable architectures,
the tileable architectures can improve the minimum routable
channel width by 13% and area-delay product by 2%. In
particular, our results showed that in the context of tileable
FPGA, a mix of Universal and Wilton switch block patterns
leads to the best trade-off in area, delay and routability, while
Wilton switch block was the best choice in non-tileable FPGAs.

Isn’t switch-pattern design a closed problem?

2019 International Conference on Field-Programmable Technology (ICFPT)

A Study on Switch Block Patterns for
Tileable FPGA Routing Architectures

Xifan Tang, Edouard Giacomin, Aurélien Alacchi and Pierre-Emmanuel Gaillardon
University of Utah
Email: xifan.tang@utah.edu

Abstract—Following the rapid growth of Field Programmable
Gate Arrays (FPGAs) sizes, the regularity of architectures has
become a critical feature, leading to the development of million-
of-LUT devices. While the routing architecture plays a dom-
inant role in the area, delay and power of modern FPGAs,
most of previously published works focus on improving the
routability and performance of FPGAs while very few studied
tileable (highly-regular) routing architectures. In this paper, we
provide a detailed analysis between tileable and popular non-
tileable FPGAs considering modern routing architectures. First,
we upgrade VPR to generate tileable routing architecture, which
can support different switch block patterns for (1) the routing
tracks that start/end in a tile and (2) the routing tracks that
pass through a tile. Then, we evaluate the performance of mixed
switch blocks patterns in the context of a Stratix IV-Ilke FPGA
architecture, by considering the most representa 3
i.e., Subset, Universal and Wilton. Experi
that averaged over the MCNC and VTR
compared to the well-optimized non-tileabl
tileable architectures can improve the minimum routable channel
width by 13% and area-delay product by 2%. In particular, our
results showed that in the context of tileable FPGA, a mix of

ITnivercal and Wiltoan cwiteh hlock

natternc lead o the hect frade.

Experimental results show that compared to VPR, our RRG
generator can reduce the number of unique tiles by 8.8x and
5.5x for homogeneous and heterogeneous FPGAs respectively,
even considering 128 x 128 array size.
(2) More than tileable FPGA, our RRG generator g _
different switch block patterns for (a) the routing Subset [20]
start/end in a tile and (b) the routing tracks that pass a tle.
We evaluate the performance of mixed switch blocks patterns 1997

in the comext of a Stratix IV-like FPGA arch

g presentative patterns, i.e. w
o Imran [22]JExperimentaT resaTts
B at averaged over the ™ and VTR benchmarks,
When compared to the well- opumlzed non-| uleable architectures,

vilton switc

In
le

1 996;)31}::1[7)(6‘;‘ tal:llf1 997 a, delay and rout1 999 ile

Wilton switch block was the best choice in non-tileable FPGAs.

Meanwhile in industry: technology driving change

Routing Architecture

Intel® Stratix® 10 FPGA
Wide high-fanout MUXes, multi-drop routing segments

C4 Routing Delay
(Lower is better)

= Intel® Stratix® 10 Device

— Intel® Agilex™ Device

g
>
5
a

Intel® Agilex™ FPGA
Low-fanout, narrow and fast MUXes, single-drop routing segments
Carefully designed routing pattern to maintain and improve routability 4 ROUTING SEGNIERT INSTANCE

e

[1] Ganusov and lyer. Agilex Generation of Intel FPGAs. Hot Chips'20

Meanwhile in industry: technology driving change

Routing Architecture

Intel® Stratix® 10 FPGA
Wide high-fanout MUXes, multi-drop routing segments

C4 Routing Delay
(Lower is better)

= Intel® Stratix® 10 Device

— Intel® Agilex™ Device

g
>
5
a

Intel® Agilex™ FPGA
Low-fanout, narrow and fast MUXes, single-drop routing segments
Carefully designed routing pattern to maintain and improve routability 4 ROUTING SEGNIERT INSTANCE

e

(intel/

“Carefully designed routing pattern to maintain and improve routability”

Can we automatically design switch-patterns optimized for technology X?

[1] Lin, Wawrzynek, El Gamal. Exploring FPGA routing architecture stochastically. TCAD'10
[2] Nikoli¢ and lenne. Turning PathFinder Upside-Down. FPL'21. Best Paper Award

Irregularity problem

Regular Irregular

[1]-v6D
[1]-HaL
[1]-veU
[1]-H4R
[1]-v2D
[1]-H2L
[1]-v2u
[1]-H2R
[2]-v1D
[2]-H1L
[2]-viu
[2]-H1R

0 1 2 4

[1]-v4D
[1]-H6L
[1]-v4u
[1]-H6R

[1]-HaL
[1]-H4R
[1]-H2L
[1]-H2R

[2]-viD
[2]-H1L
[2]-viu
[2]-H1R

2 4

7-Series [1] Avalanche search [2]

[1] Petersen, Nikoli¢, and Stojilovic. NetCracker: A Peek into... 7-Series FPGAs. FPGA'21
[2] Nikoli¢ and lenne. Turning PathFinder Upside-Down. FPL'21. Best Paper Award 9

Assuming that regularity is necessary for layout reasons

1. How do we ensure that the algorithm always finds a regular solution?

2. How does the solution quality change when regularity is enforced?

10

Presentation outline

Motivation
A review of Avalanche Search
Enforcing regularity

Costs and benefits of regularity

"

A review of Avalanche Search?

FPGA router vs mosaic artist

G Art Laboratories of the Temples
of Humankind in Damanhur

Disclaimer: authors have nothing to do vith Damanhur; photo had a creative commons license

12

FPGA router vs mosaic artist

Mosaic artist has different stones available)

G Art Laboratories of the Temples
of Humankind in Damanhur

Disclaimer: authors have nothing to do vith Damanhur; photo had a creative commons license

12

FPGA router vs mosaic artist

Mosaic artist has different stones available)

G Art Laboratories of the Temples
of Humankind in Damanhur

Disclaimer: authors have nothing to do vith Damanhur; photo had a creative commons license

12

FPGA router vs mosaic artist

In each sqare of the grid,
mosaic artist can use any available stone
to create a picture

G Art Laboratories of the Temples
of Humankind in Damanhur

Disclaimer: authors have nothing to do vith Damanhur; photo had a creative commons license

12

FPGA router vs mosaic artist

In each sqare of the grid, %%ﬁ %ﬁ §
mosaic artist can use any available stone =
to create a picture
In each SB of the grid,
FPGA router can use any available switch
to route a circuit §
TTYyy
Fol Art Laboratories of the Temples P\’ A
of Humankind in Damanhur .
B N ==~ N\ 3
Oisclaimer uthors ave nthing oo with Gamanhurphtohad crestivecommons e N MY WY N N %;

12

FPGA architect vs seller of mosaic stones

FPGA architect’s problem

- Too many different switches =
expensive, poor performance

13

FPGA architect vs seller of mosaic stones

FPGA architect’s problem Mosaic stone seller’'s problem

- Too many different switches = - Too many different stones =
expensive, poor performance hard to search through inventory

13

FPGA architect vs seller of mosaic stones

FPGA architect’s problem

- Too many different switches =
expensive, poor performance

FPGA architect’s goal

« Minimize the number
of different switches

- While making the router happy
(so that it creates fast circuits)

Mosaic stone seller’'s problem

- Too many different stones =
hard to search through inventory

13

FPGA architect vs seller of mosaic stones

FPGA architect’s problem

- Too many different switches =
expensive, poor performance

FPGA architect’s goal

« Minimize the number
of different switches

- While making the router happy
(so that it creates fast circuits)

Mosaic stone seller’'s problem

- Too many different stones =
hard to search through inventory

Mosaic stone seller’s goal

« Minimize the number
of different stones

- While making the artist happy
(so that they create nice mosaics)

13

Mosaic stone sellers existed centuries before FPGA architects...

Ahmed is a 16™" century mosaic artist

v Sse cuetson
y < N o FAS, eN\P
$5%8 EIva Ry et v 705
@ m&o.o I& avy %a0a% ‘a¥s %a%¢ a\Q0.)w
oﬂ..ﬂv %...ﬁ 0L e » 4K m 133 VO. s
! '-Qw.:, m'.’nu"o.iﬁ.'c w,“hﬂmw\olﬁ
2 .m “.’(‘v) ».‘(..‘Q“.)"A.

Ancte
£ ave
- 0o
€%

)
» %
o

a5 € o/ o0

()
2 e
94 N ’.'““”“. O TP

‘e
Ky

.:.t
€

Ahmed’s ideal design made of 1000 different kinds of stones

Ahmed sails to Constantinople to buy the stones

He goes to a bazaar to find the store selling 1000 kinds of stones

... And presents his list to Mustafa the shop owner

1. Ultramarine medium vedge (576 pieces)
2. Alabaster needle (229 pieces)
3. Coral hexagon (143 pieces)

1000. Verdigris tiny star (2 pieces)

When Mustafa saw “1000. Verdigris tiny star (2 pieces)”

™ e = - 2 o .
T o o
it e < P i T

“Oh my, will I really have to search through all these bags?”

Mustafa has an idea

1. Ultramarine medium vedge (576 pieces)
2. Alabaster needle (229 pieces)
3. Coral hexagon (143 pieces)

10.

1000. Verdigris tiny star (2 pieces)

“Here, you seem to need these 10 kinds the most.”

Mustafa has an idea

1. Ultramarine medium vedge (576 pieces)
2. Alabaster needle (229 pieces)
3. Coral hexagon (143 pieces)

10.

1000. Verdigris tiny star (2 pieces)

“| give you a big discount on any number of them!”

Mustafa has an idea

1. Ultramarine medium vedge (576 pieces)
2. Alabaster needle (229 pieces)
3. Coral hexagon (143 pieces)

10.

1000. Verdigris tiny star (2 pieces)

“But once | take the bags out, you have to buy. Deal?”

Mustafa has an idea

1. Ultramarine medium vedge (576 pieces)
2. Alabaster needle (229 pieces)
3. Coral hexagon (143 pieces)

10.

1000. Verdigris tiny star (2 pieces)

“You can come tomorrow with a new design.”

Ahmed agrees and tries to redesign the mosaic
to maximize the usage of discounted stones

Let's see how this works for switch-block exploration

Initial setting

switches marked for fabrication
(kinds of stone Mustafa pledged to bring out)

Py

Il

switches available to the router
(Mustafa's catalogue)

Iif
I

discounted cost
(0)

everything else
is expensive

23

PathFinder routes the first time (Ahmed creates his ideal mosaic)

switches marked for fabrication PathFinder routes circuits (each connection by a shortest path)
(kinds of stone Mustafa pledged to bring out) (Ahmed designs the mosaic)

My
—_— —_—
discounted cost a— E——
(0) - —

Il

switches available to the router
(Mustafa's catalogue)

everything else
is expensive

23

Count in how many SBs each switch is used (Ahmed writes his list)

Count in how many switch-blocks each switch was used
(Ahmed counts different stones)

PathFinder routes circuits (each connection by a shortest path)
(Ahmed designs the mosaic)
hyy iy
e S— j—
hyy iy
_ T
Ahyy L]
= 1 —— = |1 =

23

Give discounts and mark for fabrication (Mustafa gives discount

Give discounts and mark for fabrication
(Mustafa gives discount and takes out the bags)

PathFinder routes circuits (each connection by a shortest path)
(Ahmed designs the mosaic)
Hhyy iy
e —— j—
Ahyy Fhyy
neaa————— e —
= 2 == = ? ==
iy iy
= 1 —— = |1 =

23

Give discounts and mark for fabrication (Mustafa gives discounts)

switches marked for fabrication
(kinds of stone Mustafa pledged to bring out)

by

—

e

switches available to the router
(Mustafa's catalogue)

discounted cost
(0)

everything else
is expensive

23

PathFinder routes again, maximizing usage of discounted switches (Ahmed redesigns his mosaic)

switches marked for fabrication PathFinder routes circuits (each connection by a shortest path)
(kinds of stone Mustafa pledged to bring out) (Ahmed designs the mosaic)
by

discounted cost

(0) -—

I

switches available to the router
(Mustafa's catalogue)

everything else

is expensive ::f

23

PathFinder routes again, maximizing usage of discounted switches (Ahmed redesigns his mosaic)

switches marked for fabrication PathFinder routes circuits (each connection by a shortest path)
(kinds of stone Mustafa pledged to bring out) (Ahmed designs the mosaic)
by

discounted cost

(0) —

I

switches available to the router
(Mustafa's catalogue)

everything else
is expensive

23

PathFinder still wants non-discounted switches (Ahmed'’s list is still long)

Count in how many switch-blocks each switch was used
(Ahmed counts different stones)

PathFinder routes circuits (each connection by a shortest path)
(Ahmed designs the mosaic)
Myy (1]
::_ — ju—
— — 4 —=
XX} by
=0 == —
p— — 1S
Mgy Myt Hhyy
E 0 — E a— —_= 0

Could be required for connectivity, congestion, or critical paths

23

What do we do now?

Let’'s see what Mustafa did

Ahmed agrees and tries to rework the design thinking of the discount

With only 493 kinds of stones, difference is barely visible

So Ahmed goes to bargain with Mustafa again

1. Ultramarine medium vedge
2. Alabaster needle
3. Coral hexagon

10.

493. Sienna medium triangle (6 pieces)

When Mustafa saw “493. Sienna medium triangle (6 pieces)”

“Oh my, here we go again..”

But he still wants Ahmed to be happy

1. Ultramarine medium vedge
2. Alabaster needle
3. Coral hexagon

10.
20.

493. Sienna medium triangle (6 pieces)

“Alright, alright, | give you these next ten with a large discount too.”

Ahmed goes to rework the mosaic further

l J
o
‘c\§‘

=9,
e)

Then he bargains with Mustafa some more

An agreement is made

Eventually, Ahmed is happy with his new design
taking advantage of Mustafa’s discounts

An agreement is made

What do we do now?

Give new discounts

Count in how many switch-blocks each switch was used

PathFinder routes circuits (each connection by a shortest path)
(Ahmed counts different stones)

=
e
T i

32

Give new discounts

Give discounts and mark for fabrication

PathFinder routes circuits (each connection by a shortest path)
(Mustafa gives discount and takes out the bags)

(Ahmed designs the mosaic)

iy (X1
e —— jr—
=6t = = ‘" =
CLB CLB CLB HH HH
My My
—_ —— = —
= _ = 11—
cB B L8 —H _ ‘ —_
Myt Myt iy
cB B B —_— = _ =, =

o

32

PathFinder uses only switches marked for fabrication (blue)

switches marked for fabrication PathFinder routes circuits (each connection by a shortest path)
(kinds of stone Mustafa pledged to bring out) (Ahmed designs the mosaic)
by
discounted cost
(0) oa— [E—

switches available to the router
(Mustafa's catalogue)

everything else ::Z
is expensive ::f

Everybody is happy

32

And we have the final pattern that will be produced

33

Avalanche Search [Nikoli¢ and lenne. Turning PathFinder Upside-Down. FPL'21]

1. switches marked for fabrication «+ {}
2. all possible switches can be used at cost C

3. let PathFinder route the circuits
(with additional switch-minimization costing; see FPL'21)

4. if no unmarked switches are used, done
5. mark n most-used unmarked switches and set their cost to 0

6. goto 3

34

And this is how we obtain IRREGULAR patterns...

Even if we manage to minimize the switch block to M switches

1. some M switches will be easy to lay out
2. others will be hard (or impossible) to lay out

How do we find M switches that are easy to lay out, but as close as
possible to the M that the router wants?

35

Enforcing regularity

Mustafa had a similar problem

An agreement is made

By then, Mustafa took out 87 bags, <« 1000

An agreement is made

But, to take out these 87, he had to move 492 bags in total

An agreement is made

Since the ones he pledged to take out were scattered around the pile

Mustafa’s new problem

“How do | give Ahmed 87 kinds of stone that are as close as possible to
the ones he wants, but so that | never move more than 150 bags?”

Two years after, Ahmed sails to Constantinople again

But Mustafa is smarter this time

Location of bags matters

1. Ultramarine medium vedge (576 pieces) ¢/

2. Alabaster needle (229 pleces
3. Coral hexagon (143 pieces) ./‘\
too deep inside and
8. far from 1. don't.discount

17. ¢
Ny

134.V/
3.V 135.¢/

79.

113.v 1000. Verdigris tiny star (2 pieces)

Mustafa ticks 87 bags that Ahmed desires the most,
but which don't violate his constraints (on moving < 150 bags)

Location of bags matters

1. Ultramarine medium vedge (576 pieces) ¢/

2. Alabaster needle (229 pieces)
3. Coral hexagon (143 pieces) ./‘\
too deep inside and
8. far from 1. don't.discount

17. ¢

134.V/
135.¢/

big discount, take out now

1000. Verdigris tiny star (2 pieces)

“For stone kinds ticked in blue, | give you a big discount.
For any number of pieces!”

Location of bags matters

1. Ultramarine medium vedge (576 pieces) ¢/
2. Alabaster needle (229 pieces)
3. Coral hexagon (143 pieces) ./‘\

too deep inside and
8. far from 1. don't discount

17. ¢

134.V/
135.¢/

big discount, take out now

1000. Verdigris tiny star (2 pieces)

“But once | take the bags out, you have to buy. Deal?”

Constraints are hard

1. Ultramarine medium vedge (576 pieces) ¢/
2. Alabaster needle (229 pieces)
3. Coral hexagon (143 pieces) ./‘\

too deep inside and
8. far from 1. don't discount

17. ¢

134.V/
135.¢/

big discount, take out now

1000. Verdigris tiny star (2 pieces)

Mustafa always ends bargaining on a complete ticked list

Important takeaways

Exact constraints which Mustafa applies while ticking Ahmed's list
depend on the layout of his pile

For another merchant they will be different

)

But the algorithm is identical
(and hence general)

)

Let’s see how this works for REGULAR switch-block exploration

Key points: constructing a feasible solution

1. Encode ANY regularity constraints
(e.g., for layout or CAD tools)
as an Integer Linear Program (ILP)

2. Let ILP maximize PathFinder’s “desire” (usage of different switches)
while satisfying the above constraints

44

Key points: updating costs

For switches in the ILP solution (satisfying regularity constraints)

1. Give a big discount to n most-used unmarked switches

For switches not in the ILP solution (violating regularity constraints)

1. Assign full cost with no discount

45

Key points: ensuring that constraints are met

- Final pattern is the last ILP solution

46

Regularizing Avalanche Search

1.
2.
3.
4.
5.
6.

switches marked for fabrication « {}

all possible switches can be used at cost C

let PathFinder route the circuits

if iterations expanded = return the last ILP solution
solve the ILP, always retaining marked switches

mark n most-used unmarked switches from ILP’'s solution
and set their costto 0

goto 3

47

Costs and benefits of regularity

Experimental setup

- A plane-based architecture with eight 6-LUTs in the CLB
- 2x H1, H2, H4, H6, and 2x V1, V4 wires per LUT
- 4nm predictive technology [1]

alus, tseng, ex5p MCNC [2] circuits (~ 2700 LUTs in total)
simultaneously routed in exploration by VTR-8

- MCNC circuits for critical path delay measurement
- 10000 LUT Gnl [3] circuits for routability measurement

[1] Nikolic, Catthoor, Tékei, and lenne. Global Is the New Local. FPGA'21

[2] Yang, Logic synthesis and optimization benchmarks user guide. MCNC Tech. Report'91
[3] Stroobandt, Depreitere, and Campenhout. Generating new benchmark designs.
Integration’99

48

Limiting the number of different multiplexer and fanout sizes

- Fewer multiplexer sizes = easier layout

- Observed in commercial architectures [1]

[1] Petersen, Nikoli¢, and Stojilovic. NetCracker: A Peek into... 7-Series FPGAs. FPGA'21

49

Multiplexer and fanout sizes: delay

1.46 A

run 1
1.45 A [}

1.44 A ®

average
1.43 A ® ®

- -
1429 e e -
1.41 A -

1.40 A

Geomean routed delay [ns]

run 2

1.39 A1

1.38 1

T T
1 2 4 irreqular, irregular,
any size size = size(1)

allowed different mux and fanout sizes 20

Multiplexer and fanout sizes: delay

Geomean routed delay [ns]

=
~
S

=

N

w
L

=

>

N
L

=

>

_
L

=
>
o

Regularization of fanins and fanouts

slightly deteriorates performance
#
°
°
® ® .
o* .0 E °
e o0 °
® °
® °
°
. T
i 2I ;1 irreglular, irregular,
any size size = size(1)

allowed different mux and fanout sizes

50

Multiplexer and fanout sizes: routability

Total connections routed [103]

Routed delay [ns]

500 A 369 ﬁ245
450 A
(0]
400 o,
[0
350 - oe_ ‘
o ¢
300 5 o %o
'C f‘am
250 ’ 8200
Py 8¢
o o828 ©e8 5830 88g°
= Q $-L) o)
ge=es | L g="" % []
1.45 A) [)
(J []
094% o® ® °
1.40 ® ®e oo o L TL o*®
T T T T . T
1 2 4 irregular, irregular,
any size size = size(1)

allowed different mux and fanout sizes

50

Multiplexer and fanout sizes: routability

Total connections routed [103]

Routed delay [ns]

500 A

450 A

400 A

w

w

o
!

300 A

N

w

o
!

200 A

1.45
1.40

369 245
C
@
O
(o
O
o (
e
P C
LY
@ @
(;(L@(?
. - . §ige
T | [-sg%ﬁ HE g ¢
g8=es g c g==T 1 8
Regularization of fanins and fanouts
significantly improves routability
T T T I.. T
1 2 4 irregular, irregular,
any size size = size(1)

allowed different mux and fanout sizes

50

Each mux m; shares > & inputs with at least one other mux m,

(reduced capacitance, vias, area)

[1] Chromczak, Wheeler, Chiasson, How, Langhammer, Vanderhoek, Zgheib, and Ganusov.
Architectural Enhancements in Intel® Agilex™ FPGAs. FPGA'20

[2] Petersen, Nikolic¢, and Stojilovic. NetCracker: A Peek into... 7-Series FPGAs. FPGA'21

51

Input sharing: experiments

All wires have a fanin and fanout of 6 to other wires

sharing € [0..5]

52

Input sharing: delay

1.46
1.45
1.44 4 <®
1.43 - ° e ¢ Lad
1.42 -

1.41 A

Geomean routed delay [ns]

1.40 1

1.39 1

1.38 1

shared inputs per mux pair (out of 6) 53

Input sharing:

I

~

N
L

=

I

w
|

Geomean routed delay [ns]
= -
e R
= N

=
N
o

Enforcing input sharing

slightly improves performance

shared inputs per mux pair (out of 6)

53

Input sharing: routability

Total connections routed [103]

Routed delay [ns]

240 A
230 A g
2204 o, Og 8
L] e
® ®
210 - 800§O e e ® e U: le®] Sgg
°
®) 00, 8
200 4 8% ° . ® o %o, =) e
> I - B S P
OS) 8 o G © 00Q, 5
1001 8% 828 °9e® g 8 °08o
QOOO © o %g.. SO'O S 88”
10l 8 g8 885 el e 8
~ O == e
O Q@ .O
170 4
1.45 1
° o) 0 o °
0°¢% ® V) () o®
140{ ® e L o’ O © o,
0 1 2 3 4 5

shared inputs per mux pair (out of 6)

54

Input sharing: routability

Total connections routed [103]

Routed delay [ns]

240 4

N

w

o
!

N
N
o

210 A

200 4

190 ~

180 A

1704

1.45
1.40

shared inputs per mux pair (out of 6)

. $ s
% o a ®
. (EO o e . : cCe e e
o (\L, O
-gé.m Q :E O‘Q{C.m QC,L OEOEQ.(Lo ;Q
@ é S i :u © 0® @° _¢
;z(8 %& Ogqf @jj 0ol <;§§§
(<} Q
U - - S
2 s c 3
Enforcing input sharing
does not deteriorate routability
7 [} ¢ [} ()
0 1 2 3 4 '

54

Other forms of regularity

- Many other forms of regularity presented in the paper

- Arbitrary constraints encodable as ILP supported by the algorithm

55

Conclusions

- We developed an algorithm that can automatically produce optimized
switch-patterns that satisfy arbitrary constraints encodable as ILP

56

Conclusions

- We developed an algorithm that can automatically produce optimized
switch-patterns that satisfy arbitrary constraints encodable as ILP

- Enforcing regularity required for layout
can sometimes benefit both performance and routability
and it never significantly deteriorates either

56

Thank you for attention

https://github.com/EPFL-LAP/fpga23-regularity

https://github.com/EPFL-LAP/fpga23-regularity

If you found the story of Mustafa and Ahmed helpful

unicef@ for every child

= DONATE Q

8 Appeal

Devastating earthquakes
strike Syria and Tirkiye

Thousands of children at risk in
aftermath of destruction.

Please consider helping people in their region

58

	What is the problem?
	A review of Avalanche Search?
	Enforcing regularity
	Costs and benefits of regularity

