
Regularity Matters: Designing Practical FPGA Switch-Blocks

Stefan Nikolić and Paolo Ienne

FPGA’23, Monterey, 13.02.2023

École Polytechnique Fédérale de Lausanne

What is the problem?

A very quick review of Island-Style FPGA architecture

CLB CLB CLB CLB CLB

CLB CLB CLB CLB CLB

CLB CLB CLB CLB CLB

“Islands of LUTs”

2

A very quick review of Island-Style FPGA architecture

CLB CLB CLB CLB CLB

CLB CLB CLB CLB CLB

CLB CLB CLB CLB CLB

“Surrounded by channels of prefabricated wires”

2

A very quick review of Island-Style FPGA architecture

“There is a switch between wire A and wire B”

2

A very quick review of Island-Style FPGA architecture

CLB CLB CLB CLB CLB

CLB CLB CLB CLB CLB

CLB CLB CLB CLB CLB

A
B

switch(A, B)

“There is a switch between wire A and wire B”

2

A very quick review of Island-Style FPGA architecture

CLB CLB CLB CLB CLB

CLB CLB CLB CLB CLB

CLB CLB CLB CLB CLB

SB

switch-block (SB)

2

A very quick review of Island-Style FPGA architecture

CLB CLB CLB CLB CLB

CLB CLB CLB CLB CLB

CLB CLB CLB CLB CLB

A
B

switch(A, B)

All SBs are identical (e.g., one has switch(A, B) =⇒ all have them

2

A very quick review of Island-Style FPGA architecture

CLB CLB CLB CLB CLB

CLB CLB CLB CLB CLB

CLB CLB CLB CLB CLB

SB

All SBs are identical (e.g., one has switch(A, B) =⇒ all have them

2

What is the problem?

CLB CLB CLB CLB CLB

CLB CLB CLB CLB CLB

CLB CLB CLB CLB CLB

SB

Which switches should the SB have?

3

What do we expect from a switch-block?

Route many different connections
of many different circuits
with minimal delay

4

What do we expect from a switch-block?

CLB CLB CLB CLB CLB

CLB CLB CLB CLB CLB

CLB CLB CLB CLB CLB

SB

fully-connected =⇒ hops always minimal

4

What do we expect from a switch-block?

from LUTs m
ux

from other wires

prefabricated wire

4

What do we expect from a switch-block?

from LUTs m
ux

from other wires

prefabricated wire

4

What do we expect from a switch-block?

4

What do we expect from a switch-block?

So we need

• something sparse
• that still minimizes hops
• allows paths to avoid intersecting (congestion resolution)

4

What is the problem?

How to make this sparse? (and regular)

5

Isn’t switch-pattern design a closed problem?

6

Isn’t switch-pattern design a closed problem?

1997

1997 19991996 6

Meanwhile in industry: technology driving change

[1] Ganusov and Iyer. Agilex Generation of Intel FPGAs. Hot Chips’20
7

Meanwhile in industry: technology driving change

“Carefully designed routing pattern to maintain and improve routability”
7

Can we automatically design switch-patterns optimized for technology X?

[1] Lin, Wawrzynek, El Gamal. Exploring FPGA routing architecture stochastically. TCAD’10
[2] Nikolić and Ienne. Turning PathFinder Upside-Down. FPL’21. Best Paper Award

Irregularity problem

[1]-V6D
[1]-H4L
[1]-V6U
[1]-H4R

[1]-V2D
[1]-H2L
[1]-V2U
[1]-H2R

[2]-V1D
[2]-H1L
[2]-V1U
[2]-H1R

[2
]-

V1
U

[2
]-

H
1R

[2
]-

V1
D

[2
]-

H
1L

[1
]-

V2
U

[1
]-

H
2R

[1
]-

V2
D

[1
]-

H
2L

[1
]-

V6
U

[1
]-

H
4R

[1
]-

V6
D

[1
]-

H
4L

0 1 2 4

[1]-V4D
[1]-H6L
[1]-V4U
[1]-H6R

[1]-H2L
[1]-H2R

[2]-V1D
[2]-H1L
[2]-V1U
[2]-H1R

[1]-H4L
[1]-H4R

[1
]-

V4
U

[1
]-

H
6R

[1
]-

V4
D

[1
]-

H
6L

[1
]-

H
2R

[1
]-

H
2L

[2
]-

V1
U

[2
]-

H
1R

[2
]-

V1
D

[2
]-

H
1L

[1
]-

H
4R

[1
]-

H
4L

0 1 2 4

7-Series [1] Avalanche search [2]

Regular Irregular

[1] Petersen, Nikolić, and Stojilović. NetCracker: A Peek into... 7-Series FPGAs. FPGA’21
[2] Nikolić and Ienne. Turning PathFinder Upside-Down. FPL’21. Best Paper Award 9

Two questions

Assuming that regularity is necessary for layout reasons

1. How do we ensure that the algorithm always finds a regular solution?

2. How does the solution quality change when regularity is enforced?

10

Presentation outline

Motivation

A review of Avalanche Search

Enforcing regularity

Costs and benefits of regularity

11

A review of Avalanche Search?

FPGA router vs mosaic artist

Disclaimer: authors have nothing to do with Damanhur; photo had a creative commons license

CLB

CLB

CLBCLBCLB

CLBCLBCLB

CLB

CLB

CLB CLB CLB CLB

CLB

12

FPGA router vs mosaic artist

Disclaimer: authors have nothing to do with Damanhur; photo had a creative commons license

CLB

CLB

CLBCLBCLB

CLBCLBCLB

CLB

CLB

CLB CLB CLB CLB

CLB

Mosaic artist has different stones available

12

FPGA router vs mosaic artist

Disclaimer: authors have nothing to do with Damanhur; photo had a creative commons license

CLB

CLB

CLBCLBCLB

CLBCLBCLB

CLB

CLB

CLB CLB CLB CLB

CLB

Mosaic artist has different stones available

FPGA router has different switches available

12

FPGA router vs mosaic artist

Disclaimer: authors have nothing to do with Damanhur; photo had a creative commons license

CLB

CLB

CLBCLBCLB

CLBCLBCLB

CLB

CLB

CLB CLB CLB CLB

CLB

In each sqare of the grid,
mosaic artist can use any available stone

to create a picture

12

FPGA router vs mosaic artist

Disclaimer: authors have nothing to do with Damanhur; photo had a creative commons license

CLB

CLB

CLBCLBCLB

CLBCLBCLB

CLB

CLB

CLB CLB CLB CLB

CLB

In each sqare of the grid,
mosaic artist can use any available stone

to create a picture

In each SB of the grid,
FPGA router can use any available switch

to route a circuit

12

FPGA architect vs seller of mosaic stones

FPGA architect’s problem

• Too many different switches =
expensive, poor performance

FPGA architect’s goal

• Minimize the number
of different switches

• While making the router happy
(so that it creates fast circuits)

Mosaic stone seller’s problem

• Too many different stones =
hard to search through inventory

Mosaic stone seller’s goal

• Minimize the number
of different stones

• While making the artist happy
(so that they create nice mosaics)

13

FPGA architect vs seller of mosaic stones

FPGA architect’s problem

• Too many different switches =
expensive, poor performance

FPGA architect’s goal

• Minimize the number
of different switches

• While making the router happy
(so that it creates fast circuits)

Mosaic stone seller’s problem

• Too many different stones =
hard to search through inventory

Mosaic stone seller’s goal

• Minimize the number
of different stones

• While making the artist happy
(so that they create nice mosaics)

13

FPGA architect vs seller of mosaic stones

FPGA architect’s problem

• Too many different switches =
expensive, poor performance

FPGA architect’s goal

• Minimize the number
of different switches

• While making the router happy
(so that it creates fast circuits)

Mosaic stone seller’s problem

• Too many different stones =
hard to search through inventory

Mosaic stone seller’s goal

• Minimize the number
of different stones

• While making the artist happy
(so that they create nice mosaics)

13

FPGA architect vs seller of mosaic stones

FPGA architect’s problem

• Too many different switches =
expensive, poor performance

FPGA architect’s goal

• Minimize the number
of different switches

• While making the router happy
(so that it creates fast circuits)

Mosaic stone seller’s problem

• Too many different stones =
hard to search through inventory

Mosaic stone seller’s goal

• Minimize the number
of different stones

• While making the artist happy
(so that they create nice mosaics)

13

Mosaic stone sellers existed centuries before FPGA architects...

Ahmed is a 16th century mosaic artist

Ahmed’s ideal design made of 1000 different kinds of stones
15

Ahmed sails to Constantinople to buy the stones

16

He goes to a bazaar to find the store selling 1000 kinds of stones

17

... And presents his list to Mustafa the shop owner

1. Ultramarine medium vedge (576 pieces)
2. Alabaster needle (229 pieces)
3. Coral hexagon (143 pieces)
 .
 .
 .

1000. Verdigris tiny star (2 pieces)

18

When Mustafa saw “1000. Verdigris tiny star (2 pieces)”

“Oh my, will I really have to search through all these bags?”
19

Mustafa has an idea

1. Ultramarine medium vedge (576 pieces)
2. Alabaster needle (229 pieces)
3. Coral hexagon (143 pieces)
 .
 .
 .

1000. Verdigris tiny star (2 pieces)

10.

“Here, you seem to need these 10 kinds the most.”

20

Mustafa has an idea

1. Ultramarine medium vedge (576 pieces)
2. Alabaster needle (229 pieces)
3. Coral hexagon (143 pieces)
 .
 .
 .

1000. Verdigris tiny star (2 pieces)

10.

“I give you a big discount on any number of them!”

20

Mustafa has an idea

1. Ultramarine medium vedge (576 pieces)
2. Alabaster needle (229 pieces)
3. Coral hexagon (143 pieces)
 .
 .
 .

1000. Verdigris tiny star (2 pieces)

10.

“But once I take the bags out, you have to buy. Deal?”

20

Mustafa has an idea

1. Ultramarine medium vedge (576 pieces)
2. Alabaster needle (229 pieces)
3. Coral hexagon (143 pieces)
 .
 .
 .

1000. Verdigris tiny star (2 pieces)

10.

“You can come tomorrow with a new design.”

20

Ahmed agrees and tries to redesign the mosaic
to maximize the usage of discounted stones

Let’s see how this works for switch-block exploration

Initial setting
switches marked for fabrication

(kinds of stone Mustafa pledged to bring out)

switches available to the router
(Mustafa's catalogue)

discounted cost
(0)

everything else
is expensive

23

PathFinder routes the first time (Ahmed creates his ideal mosaic)

switches marked for fabrication
(kinds of stone Mustafa pledged to bring out)

switches available to the router
(Mustafa's catalogue)

discounted cost
(0)

CLB CLB

CLB

CLB CLB

CLBCLB

CLB

CLB

CLB

CLB

CLB CLB CLB CLB

PathFinder routes circuits (each connection by a shortest path)
(Ahmed designs the mosaic)

everything else
is expensive

23

Count in how many SBs each switch is used (Ahmed writes his list)

CLB CLB

CLB

CLB CLB

CLBCLB

CLB

CLB

CLB

CLB

CLB CLB CLB CLB

4

22

3

11

PathFinder routes circuits (each connection by a shortest path)
(Ahmed designs the mosaic)

Count in how many switch-blocks each switch was used
(Ahmed counts different stones)

23

Give discounts and mark for fabrication (Mustafa gives discounts)

CLB CLB

CLB

CLB CLB

CLBCLB

CLB

CLB

CLB

CLB

CLB CLB CLB CLB

4

22

3

11

PathFinder routes circuits (each connection by a shortest path)
(Ahmed designs the mosaic)

Give discounts and mark for fabrication
(Mustafa gives discount and takes out the bags)

23

Give discounts and mark for fabrication (Mustafa gives discounts)
switches marked for fabrication

(kinds of stone Mustafa pledged to bring out)

switches available to the router
(Mustafa's catalogue)

discounted cost
(0)

everything else
is expensive

23

PathFinder routes again, maximizing usage of discounted switches (Ahmed redesigns his mosaic)

CLB CLB

CLB

CLB CLB

CLBCLB

CLB

CLB

CLB

CLB

CLB CLB CLB CLB

PathFinder routes circuits (each connection by a shortest path)
(Ahmed designs the mosaic)

switches marked for fabrication
(kinds of stone Mustafa pledged to bring out)

switches available to the router
(Mustafa's catalogue)

discounted cost
(0)

everything else
is expensive

23

PathFinder routes again, maximizing usage of discounted switches (Ahmed redesigns his mosaic)

PathFinder routes circuits (each connection by a shortest path)
(Ahmed designs the mosaic)

CLB CLB

CLB

CLB CLB

CLBCLB

CLB

CLB

CLB

CLB

CLB CLB CLB CLB

switches marked for fabrication
(kinds of stone Mustafa pledged to bring out)

switches available to the router
(Mustafa's catalogue)

discounted cost
(0)

everything else
is expensive

23

PathFinder still wants non-discounted switches (Ahmed’s list is still long)

PathFinder routes circuits (each connection by a shortest path)
(Ahmed designs the mosaic)

Count in how many switch-blocks each switch was used
(Ahmed counts different stones)

CLB CLB

CLB

CLB CLB

CLBCLB

CLB

CLB

CLB

CLB

CLB CLB CLB CLB

6

2

0

4

00

1

Could be required for connectivity, congestion, or critical paths

23

What do we do now?

Let’s see what Mustafa did

Ahmed agrees and tries to rework the design thinking of the discount

With only 493 kinds of stones, difference is barely visible

25

So Ahmed goes to bargain with Mustafa again

1. Ultramarine medium vedge
2. Alabaster needle
3. Coral hexagon
 .
 .
 .

493. Sienna medium triangle (6 pieces)

10.

26

When Mustafa saw “493. Sienna medium triangle (6 pieces)”

“Oh my, here we go again...”
27

But he still wants Ahmed to be happy

1. Ultramarine medium vedge
2. Alabaster needle
3. Coral hexagon
 .
 .
 .

493. Sienna medium triangle (6 pieces)

10.
20.

“Alright, alright, I give you these next ten with a large discount too.”

28

Ahmed goes to rework the mosaic further

Then he bargains with Mustafa some more
29

An agreement is made

Eventually, Ahmed is happy with his new design
taking advantage of Mustafa’s discounts 30

An agreement is made

By then, Mustafa took out 87 bags—quite some work, but≪ 1000
30

What do we do now?

Give new discounts

PathFinder routes circuits (each connection by a shortest path)
(Ahmed designs the mosaic)

Count in how many switch-blocks each switch was used
(Ahmed counts different stones)

CLB CLB

CLB

CLB CLB

CLBCLB

CLB

CLB

CLB

CLB

CLB CLB CLB CLB

6

2

0

4

00

1

Everybody is happy

32

Give new discounts

PathFinder routes circuits (each connection by a shortest path)
(Ahmed designs the mosaic)

CLB CLB

CLB

CLB CLB

CLBCLB

CLB

CLB

CLB

CLB

CLB CLB CLB CLB

6

2

0

4

00

1
--

Give discounts and mark for fabrication
(Mustafa gives discount and takes out the bags)

Everybody is happy

32

PathFinder uses only switches marked for fabrication (blue)
PathFinder routes circuits (each connection by a shortest path)

(Ahmed designs the mosaic)

CLB CLB

CLB

CLB CLB

CLBCLB

CLB

CLB

CLB

CLB

CLB CLB CLB CLB

switches marked for fabrication
(kinds of stone Mustafa pledged to bring out)

switches available to the router
(Mustafa's catalogue)

discounted cost
(0)

everything else
is expensive

Everybody is happy

32

And we have the final pattern that will be produced

33

Avalanche Search [Nikolić and Ienne. Turning PathFinder Upside-Down. FPL’21]

1. switches marked for fabrication← {}

2. all possible switches can be used at cost C

3. let PathFinder route the circuits
(with additional switch-minimization costing; see FPL’21)

4. if no unmarked switches are used, done

5. mark n most-used unmarked switches and set their cost to 0

6. goto 3

34

And this is how we obtain irregular patterns...

Even if we manage to minimize the switch block to M switches

1. some M switches will be easy to lay out
2. others will be hard (or impossible) to lay out

How do we find M switches that are easy to lay out, but as close as
possible to the M that the router wants?

35

Enforcing regularity

Mustafa had a similar problem

An agreement is made

By then, Mustafa took out 87 bags,≪ 1000
37

An agreement is made

But, to take out these 87, he had to move 492 bags in total

37

An agreement is made

Since the ones he pledged to take out were scattered around the pile

37

Mustafa’s new problem

“How do I give Ahmed 87 kinds of stone that are as close as possible to
the ones he wants, but so that I never move more than 150 bags?”

38

Two years after, Ahmed sails to Constantinople again

39

But Mustafa is smarter this time

40

Location of bags matters

1. Ultramarine medium vedge (576 pieces)
2. Alabaster needle (229 pieces)
3. Coral hexagon (143 pieces)

8.

11.

23.

79.

113. 1000. Verdigris tiny star (2 pieces)

117.

134.
135.

too deep inside and
far from 1. don't discount

1

2

deep beneath this one

Mustafa ticks 87 bags that Ahmed desires the most,
but which don’t violate his constraints (on moving ⩽ 150 bags)

41

Location of bags matters

1. Ultramarine medium vedge (576 pieces)
2. Alabaster needle (229 pieces)
3. Coral hexagon (143 pieces)

8.

11.

23.

79.

113. 1000. Verdigris tiny star (2 pieces)

117.

134.
135.

too deep inside and
far from 1. don't discount

1

2

deep beneath this one
big discount, take out now

“For stone kinds ticked in blue, I give you a big discount.
For any number of pieces!”

41

Location of bags matters

1. Ultramarine medium vedge (576 pieces)
2. Alabaster needle (229 pieces)
3. Coral hexagon (143 pieces)

8.

11.

23.

79.

113. 1000. Verdigris tiny star (2 pieces)

117.

134.
135.

too deep inside and
far from 1. don't discount

1

2

deep beneath this one
big discount, take out now

“But once I take the bags out, you have to buy. Deal?”
For

41

Constraints are hard

1. Ultramarine medium vedge (576 pieces)
2. Alabaster needle (229 pieces)
3. Coral hexagon (143 pieces)

8.

11.

23.

79.

113. 1000. Verdigris tiny star (2 pieces)

117.

134.
135.

too deep inside and
far from 1. don't discount

1

2

deep beneath this one
big discount, take out now

Mustafa always ends bargaining on a complete ticked list
Ahmed

41

Important takeaways

Exact constraints which Mustafa applies while ticking Ahmed’s list
depend on the layout of his pile

42

Important takeaways

For another merchant they will be different

42

Important takeaways

But the algorithm is identical
(and hence general)

42

Let’s see how this works for regular switch-block exploration

Key points: constructing a feasible solution

1. Encode any regularity constraints
(e.g., for layout or CAD tools)
as an Integer Linear Program (ILP)

2. Let ILP maximize PathFinder’s “desire” (usage of different switches)
while satisfying the above constraints

44

Key points: updating costs

For switches in the ILP solution (satisfying regularity constraints)

1. Give a big discount to n most-used unmarked switches

For switches not in the ILP solution (violating regularity constraints)

1. Assign full cost with no discount

45

Key points: ensuring that constraints are met

• Final pattern is the last ILP solution

46

Regularizing Avalanche Search

1. switches marked for fabrication← {}

2. all possible switches can be used at cost C
3. let PathFinder route the circuits
4. if iterations expanded =⇒ return the last ILP solution
5. solve the ILP, always retaining marked switches
6. mark n most-used unmarked switches from ILP’s solution
and set their cost to 0

7. goto 3

47

Costs and benefits of regularity

Experimental setup

• A plane-based architecture with eight 6-LUTs in the CLB

• 2× H1, H2, H4, H6, and 2× V1, V4 wires per LUT

• 4nm predictive technology [1]

• alu4, tseng, ex5p MCNC [2] circuits (∼ 2 700 LUTs in total)
simultaneously routed in exploration by VTR-8

• MCNC circuits for critical path delay measurement

• 10 000 LUT Gnl [3] circuits for routability measurement

[1] Nikolić, Catthoor, Tőkei, and Ienne. Global Is the New Local. FPGA’21
[2] Yang, Logic synthesis and optimization benchmarks user guide. MCNC Tech. Report’91
[3] Stroobandt, Depreitere, and Campenhout. Generating new benchmark designs.
Integration’99

48

Limiting the number of different multiplexer and fanout sizes

• Fewer multiplexer sizes =⇒ easier layout

• Observed in commercial architectures [1]

[1] Petersen, Nikolić, and Stojilović. NetCracker: A Peek into... 7-Series FPGAs. FPGA’21

49

Multiplexer and fanout sizes: delay

run 1

run 2

average

50

Multiplexer and fanout sizes: delay

50

Multiplexer and fanout sizes: routability

irregular,
any size

irregular,
size = size(1)

50

Multiplexer and fanout sizes: routability

50

Input sharing

Each mux m1 shares ⩾ ξ inputs with at least one other mux m2

(reduced capacitance, vias, area)

[1] Chromczak, Wheeler, Chiasson, How, Langhammer, Vanderhoek, Zgheib, and Ganusov.
Architectural Enhancements in Intel® Agilex™ FPGAs. FPGA’20

[2] Petersen, Nikolić, and Stojilović. NetCracker: A Peek into... 7-Series FPGAs. FPGA’21

51

Input sharing: experiments

All wires have a fanin and fanout of 6 to other wires

sharing ∈ [0..5]

52

Input sharing: delay

0 1 2 3 4 5

shared inputs per mux pair (out of 6)

1.37

1.38

1.39

1.40

1.41

1.42

1.43

1.44

1.45

1.46
Ge

om
ea

n
ro

ut
ed

 d
el

ay
 [n

s]

53

Input sharing: delay

53

Input sharing: routability

170

180

190

200

210

220

230

240

To
ta

l c
on

ne
ct

io
ns

 ro
ut

ed
 [1

03]

0 1 2 3 4 5

shared inputs per mux pair (out of 6)

1.40
1.45

Ro
ut

ed
 d

el
ay

 [n
s]

54

Input sharing: routability

54

Other forms of regularity

• Many other forms of regularity presented in the paper

• Arbitrary constraints encodable as ILP supported by the algorithm

55

Conclusions

• We developed an algorithm that can automatically produce optimized
switch-patterns that satisfy arbitrary constraints encodable as ILP

• Enforcing regularity required for layout
can sometimes benefit both performance and routability
and it never significantly deteriorates either

56

Conclusions

• We developed an algorithm that can automatically produce optimized
switch-patterns that satisfy arbitrary constraints encodable as ILP

• Enforcing regularity required for layout
can sometimes benefit both performance and routability
and it never significantly deteriorates either

56

Thank you for attention
https://github.com/EPFL-LAP/fpga23-regularity

https://github.com/EPFL-LAP/fpga23-regularity

If you found the story of Mustafa and Ahmed helpful

Please consider helping people in their region
58

	What is the problem?
	A review of Avalanche Search?
	Enforcing regularity
	Costs and benefits of regularity

