ເກາຍc

Global is the New Local:

FPGA Architecture at 5nm and Beyond

S. Nikolić, F. Catthoor*, Z. Tőkei*, and P. Ienne

FPGA'21, Online, 01.03.2021

École Polytechnique Fédérale de Lausanne *IMEC

Metal Stack Evolution

Metal Stack Evolution

 $R = \frac{\rho l}{S}$

$R = \frac{\rho l}{S}$ $S \searrow \Longrightarrow R \nearrow$

Introduction

Metal Stack Modeling

Area and Wirelength Modeling

Delay Measurement

Exploring Cluster Sizes across Technology Nodes

Summary

Metal Stack Modeling

Two pitch options considered:

- Mx for intracluster (local) wires
- My for intercluster (global) wires

Resistance

Ciofi et al., "Impact of Wire Geometry on Interconnect RC and Circuit Delay", T-ED, 2016

$$R' = \frac{1}{H_{Cu}W_{Cu}} \left(32.05 + 615 \left(\frac{\tanh(0.133W_{Cu})}{W_{Cu}} + \frac{\tanh(0.133H_{Cu})}{H_{Cu}} \right) \right)$$
(1)

Resistance: Mx-Wires

Resistance: Mx-Wires

Resistance: Mx-Wires

Resistance: My-Wires

Resistance: My-Wires

Resistance: My-Wires

• Capacitance is less sensitive to scaling than resistance

Capacitance

• Capacitance is less sensitive to scaling than resistance

Capacitance

• Capacitance is less sensitive to scaling than resistance

Capacitance

Wong et al., "Modeling of interconnect capacitance, delay, and crosstalk in VLSI", T-SM, 2000

Predictive Technology Model (PTM), Nanoscale Integration and Modeling Group, Arizona State University (ptm.asu.edu)

Area and Wirelength Modeling

• Delay measurement

- Delay measurement
- Determining the maximum number of tracks in the routing channels

- Delay measurement
- Determining the maximum number of tracks in the routing channels

Typical models based on transistor counting are insufficient for scaled technologies

- Delay measurement
- Determining the maximum number of tracks in the routing channels

Typical models based on transistor counting are insufficient for scaled technologies

Khan and Ye, "An Evaluation on the Accuracy of the Minimum Width Transistor Area Models in Ranking the Actual Layout Area of FPGA", FPL'16

Floorplan

Lewis et al., "Architectural enhancements in Stratix V", FPGA'13

Floorplan

Lewis et al., "Architectural enhancements in Stratix V", FPGA'13

Chromczak et al., "Architectural enhancements in Intel Agilex FPGAs", FPGA'20
Floorplan

Lewis et al., "Architectural enhancements in Stratix V", FPGA'13

Chromczak et al., "Architectural enhancements in Intel Agilex FPGAs", FPGA'20

LUTs

Abusultan and Khatri, "A comparison of FinFET-based FPGA LUT designs", GLSVLSI'14

LUTs

Abusultan and Khatri, "A comparison of FinFET-based FPGA LUT designs", GLSVLSI'14

LUTs

Abusultan and Khatri, "A comparison of FinFET-based FPGA LUT designs", GLSVLSI'14

space for tracing vertical tracks, created by the routing multiplexers

						/
		V4D		1		CRS
H4L	H4L	V4U	H2L	V2D	C.D.	CRS
H4R	H4L	V4U	H2L		⊢°-	CDS
H4L	V4U	VAD	V2D	H1R	СВ	- Ch3
H4R	V4D					CRS
H4R	V4U	H2R	V2U	- HIL		CRS
H4R	V4D	H2R	V2U	СВ	СВ	CRS

• All muxes transmission-gate-based Chromczack et al., FPGA'20

- All muxes transmission-gate-based Chromczack et al., FPGA'20
- All transmission-gates of minimum drive-strength (1 fin)

Chiasson, MSc Thesis, University of Toronto, 2013

N-1

- All muxes transmission-gate-based Chromczack et al., FPGA'20
- All transmission-gates of minimum drive-strength (1 fin)

Chiasson, MSc Thesis, University of Toronto, 2013

- All muxes transmission-gate-based Chromczack et al., FPGA'20
- All transmission-gates of minimum drive-strength (1 fin)

Chiasson, MSc Thesis, University of Toronto, 2013

N-1

Delay Measurement

Local Connections

Thick Local Connections: Small Clusters to the Rescue

Thick Local Connections: Small Clusters to the Rescue

Architectural Enhancements in Intel[®] Agilex[™] FPGAs Mark Wheeler

Charles Chiasson

Jeff Chromczak

Figure 9: ALM-to-ALM routing delay improvement

Exploring Cluster Sizes across Technology Nodes • Clusters of 2, 4, 8, and 16 6-LUTs

- Clusters of 2, 4, 8, and 16 6-LUTs
- Channel composition exploration

- Clusters of 2, 4, 8, and 16 6-LUTs
- Channel composition exploration
- Switch-patterns tailored for high-resistance lower metal

- Clusters of 2, 4, 8, and 16 6-LUTs
- Channel composition exploration
- Switch-patterns tailored for high-resistance lower metal
- MCNC benchmarks + VTR8.0

- Clusters of 2, 4, 8, and 16 6-LUTs
- Channel composition exploration
- Switch-patterns tailored for high-resistance lower metal
- MCNC benchmarks + VTR8.0

(Details in the paper)

Cluster Sizes: Routed Delay Results

Cluster Sizes: Routed Delay Results

Thank you for attention

https://github.com/EPFL-LAP/fpga21-scaled-tech