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Exploring Cluster Sizes across Technology Nodes
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Metal Stack Modeling



Layer Planning

Two pitch options considered:
• Mx for intracluster (local) wires
• My for intercluster (global) wires Vertical intercluster (global) wires

Horizontal intercluster (global) wires

Intracluster (local) wires
(cluster feedback, connection-block output to LUT input)

Intracell wires
(within LUTs, FFs, multiplexers, etc.)
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Wire Geometry
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Wire Geometry
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Resistance

Ciofi et al., “Impact of Wire Geometry on Interconnect RC and Circuit Delay”, T-ED, 2016

R ′ =
1

HCuWCu

(
32.05+ 615

(
tanh(0.133WCu)

WCu
+

tanh(0.133HCu)
HCu

))
(1)
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Resistance: Mx-Wires

F16 F7 F5 F4 F3
pitch [nm] 64 40 38 26 22
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Resistance: Mx-Wires

F16 F7 F5 F4 F3a F3b
pitch [nm] 64 40 38 26 22 22
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Resistance: My-Wires

F16 F7 F5 F4 F3a F3b
pitch [nm] 80 76 72 50 48 80

10
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Capacitance

• Capacitance is less sensitive to scaling than resistance
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Capacitance

Wong et al., “Modeling of interconnect capacitance, delay, and crosstalk in VLSI”,
T-SM, 2000

Predictive Technology Model (PTM), Nanoscale Integration and Modeling Group,
Arizona State University (ptm.asu.edu) 14



Area and Wirelength Modeling



Purpose

Good area and length models are necessary for

• Delay measurement

• Determining the maximum number of tracks in the routing channels

Typical models based on transistor counting
are insufficient for scaled technologies

Khan and Ye, “An Evaluation on the Accuracy of the Minimum Width Transistor
Area Models in Ranking the Actual Layout Area of FPGA”, FPL’16
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Floorplan

Lewis et al., “Architectural enhancements in Stratix V”, FPGA’13

Chromczak et al., “Architectural enhancements in Intel Agilex FPGAs”, FPGA’20

16



LUTs

Abusultan and Khatri, “A comparison of FinFET-based FPGA LUT designs”, GLSVLSI’14
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Multiplexers

• All muxes transmission-gate-based
Chromczack et al., FPGA’20

• All transmission-gates of minimum
drive-strength (1 fin)
Chiasson, MSc Thesis, University of Toronto, 2013
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Delay Measurement



Local Connections
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Local Connections: Cluster Feedback Delays
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Local Connections: Cluster Feedback Delays

21



Local Connections: Cluster Feedback Delays

21



Local Connections: Cluster Feedback Delays

21



Local Connections: Cluster Feedback Delays

21



Thick Local Connections: Thick Metal is Scarce
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Larger clusters + multi-output LUTs + more cluster inputs
= An even larger problem
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Thick Local Connections: Small Clusters to the Rescue
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Exploring Cluster Sizes across
Technology Nodes



Experimental Setup

• Clusters of 2, 4, 8, and 16 6-LUTs

• Channel composition exploration

• Switch-patterns tailored for
high-resistance lower metal

• MCNC benchmarks + VTR8.0

(Details in the paper)
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Cluster Sizes: Routed Delay Results
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Thank you for attention
https://github.com/EPFL-LAP/fpga21-scaled-tech

https://github.com/EPFL-LAP/fpga21-scaled-tech
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