Straight to the Point: Intra- and Intercluster LUT Connections

to Mitigate the Delay of Programmable Routing

S. Nikoli¢, G. Zgheib*, and P. lenne

FPGA'20, Seaside, 24.02.2020

I Ecole Polytechnique Fédérale de Lausanne
*Intel Corporation

Interconnect Doesn’t Scale Very Well...

Session 3: Computing Architectures FPGA *19, February 24-26, 2019, Seaside, CA, USA

Xilinx Adaptive Compute Acceleration Platform: Versal™
Architecture

Brian Gaide, Dinesh Gaitonde, Chirag Ravishankar, Trevor Bauer
bgaide@xilinx.com,dineshg@xilinx.com,chiragr@xilinx.com, trevor@xilinx.com

Xilinx Inc.

ABSTRACT

. P . 7 125 B Transistor Delay
In this paper we describe Xilinx’s Versal™ Adaptive Compute Accel- g = Mctzl Delay Y
eration Platform (ACAP). ACAP is a hybrid compute platform that » 100
tightly integrates traditional FPGA programmable fabric, software £
programmable processors and software programmable accelerator 3 0.75
engines. ACAP improves over the programmability of traditional &
reconfigurable platforms by introducing newer compute models in g 050
the form of software programmable accelerators and by separating %
out the data movement architecture from the compute architecture. E 0.25
The Versal architecture includes a host of new capabilities, includ- § 0.00

ing a chip-pervasive programmable Network-on-Chip (NoC), Imux 40nm 28nm 20nm 16nm 10nm 7nm
Registers, compute shell, more advanced SSIT, adaptive deskew of

A Typical Connection

A Typical Connection

Quite a few transistors...

A Typical Connection

Quite a few transistors...

Start by removing (some of) them?

i

A Typical Connection

LUT Quite a few transistors...

Start by removing (some of) them?

LUT

Back to the Future

XC4000 [1]

sose
R

=

Triptych [3]

UTFPGA1 [2]

Enable

Logic Inputs
Looku
Table

Lookup
Table

— Hardwired
Programmable Input
* Programmable Output

Clock
Reset

[1] H.-C. Hsieh, W. S. Carter, J. Ja, E. Cheung, S. Schreifels, C. Erickson, P. Freidin,
L. Tinkey, and R. Kanazawa. Third-generation architecture boosts speed and
density of field-programmable gate arrays, 1990

[2] P. Chow, S. 0. Seo, D. Au, B. Fallah, C. Li, and J. Rose. A 1.2um CMOS FPGA
using cascaded logic blocks and segmented routing, 1991

[3] C. Ebeling, G. Borriello, S. A. Hauck, D. Song, E. A. Walkup. TRIPTYCH: A New
FPGA Architecture, 1991

1990 1991

Enable

Logic Inputs

sose

FUNCTION Lookup
P - % Table

— Hardwired
Programmable Input
*** Programmable Output

Clock

Reset

[1] H.-C. Hsieh, W. S. Carter, J. Ja, E. Cheung, S. Schreifels, C. Erickson, P. Freidin,
L. Tinkey, and R. Kanazawa. Third-generation architecture boosts speed and
density of field-programmable gate arrays, 1990

[2] P. Chow, S. 0. Seo, D. Au, B. Fallah, C. Li, and J. Rose. A 1.2um CMOS FPGA
using cascaded logic blocks and segmented routing, 1991

[3] C. Ebeling, G. Borriello, S. A. Hauck, D. Song, E. A. Walkup. TRIPTYCH: A New
FPGA Architecture, 1991

Not So Fast...

Directional and Single-Driver Wires in FPGA Interconnect

Guy Lemieux Edmund Lee Marvin Tom Anthony Yu
Department of ECE, University of British Columbia
Vancouver, BC, Canada

E-mail: { 1emieux | eddyl | marvint | anthonyy } @ ece.ubc.ca

FPT'04

Using Cluster -Based Logic Bloc ks and Timing-Driven
Packing to Impr ove FPGA Speed and Density

Alexander (Sandy) Marquardtaughn Betz, and Jonathan Rose
Department of Electrical and Computer Engineering

University of Toronto
Toronto, ON, Canada M5S 3G4
{arm,vaughn jayar}@eecg.toronto.edu

FPGA'99 6

Not So Fast...

All these patterns are very simple Eﬁgﬂ

Not So Fast...

All these patterns are very simple Eﬁgﬂ

Do they really achieve all of the
hardening potential? /A

Does it make sense to harden complex patterns to reduce delay?

How should these patterns look like?

Does it make sense to harden complex patterns to reduce delay?

. Yes, it does

How should these patterns look like?

. We give an algorithm

Which Patterns?
Exploration Philosophy
The Search Algorithm
Experimental Setup
Results

Conclusions and Future Work

Which Patterns?

Issues With Full Hardening

10

Issues With Full Hardening

(Slightly) more complex pattern, could be too constraining

10

Issues With Full Hardening: A Solution?

1"

Issues With Full Hardening: A Solution?

Intel® Stratix® 10 Logic Array Blocks
and Adaptive Logic Modules User
Guide

R24

RIOR4R2 <]

Direct-Link
Interconnect from
Adjacent Block

Direct-Link «¢
Interconnect to
Adjacent Block

Local LAB
Interconnect

Issues With Full Hardening: A Solution?

Delay of the crossbar not eliminated

12

Issues With Full Hardening: A Solution?

High cost of broadcasting

13

Issues With Full Hardening: A Compromise

. | =

Each direct connection is decoupled by a multiplexer

(1] X. Tang, P-E. Gaillardon, G. De Micheli, “Pattern-based FPGA logic block and clustering algorithm”, FPL'14
[2] W. Feng, J. Greene, A. Mishchenko, “Improving FPGA Performance with a S44 LUT Structure”, FPGA'18
[3] B. Gaide, et al., “Xilinx Adaptive Compute Acceleration Platform: Versal™Architecture”, FPGA19 1%

Issues With Full Hardening: A Compromise

- I 3 |

We use this approach

15

Which Patterns?

« All the programmable interconnect flexibility retained at a minimal cost

16

Which Patterns?

« All the programmable interconnect flexibility retained at a minimal cost

* No placement constraints

16

Which Patterns?

« All the programmable interconnect flexibility retained at a minimal cost
* No placement constraints

« All existing CAD tools still work (if suboptimally)

16

Exploration Philosophy

The Starting Premise

Circuits exhibit recurring patterns of interconnect

17

The Starting Premise

Circuits exhibit recurring patterns of interconnect

Y
AN \ h algorith pattern [pattern-aware
circuits —¢-» search algorithm ”| placement algorithm

A

> placed circuits

18

The Starting Premise

Circuits exhibit recurring patterns of interconnect

19

The Starting Premise

Placed circuits exhibit recurring patterns of interconnect

19

Opportunistic Direct Connection Usage

Placed circuits exhibit recurring patterns of interconnect

normal placed circuits -
placement algorithm > search algorithm —pattern

circuits —>|

20

Opportunistic Direct Connection Usage

Placed circuits exhibit recurring patterns of interconnect

normal placed circuits -
placement algorithm > search algorithm —pattern

circuits —>|

Pros: Cons:

* No need for new CAD « Some opportunities
 No placement in the loop certainly missed

20

Opportunistic Direct Connection Usage: A Real Example (sha)

LUTN

LUTN

LUTT [|[LUT2 [= = -

LUTT [|LUT2 [= =~

21

Opportunistic Direct Connection Usage: A Real Example (sha)

/

LUTN
LUTN

LUT2 [= = =

A
]

21

Opportunistic Direct Connection Usage: A Real Example (sha)

/

LUTN
LUTN

LUT2
LUT2 [= ==

21

Opportunistic Direct Connection Usage: A Real Example (sha)

T TT T T T T JT T T T TA+T
Before Permutation - After Permutatio
K~ L '
1 SIMlssis
L I R Iy
T . I
T~ l mn "‘\
pm—, =g ‘
|
T ,
=0 =
amiil e |
INERNEP —
P I
1Bis 1 T
~N= —
2\ 2\ \ \

Opportunistic Direct Connection Usage: A Real Example (sha)

TTR<T T TTT] T T T TA—1
Before Permutation —— After Permutation

\.../_.

—

- |
[

|
| S
|

~—

™ ™~

I 3

3
!
—] g iy
L4
[

R

—

Y ST
/
\
|

NI \
7
—~

1 hY

d sl

+

We modlfy placement msrde clusters to maxrmlze coverage

B I
|
B
)
7/

(The only departure from the purely opportunlstlc approach)
N s e I Y

The Search Algorithm

General approach = enumerate + test

Enumeration: Some Constraints

+ Pattern is the same for each tile

+ (Chebyshev) length of the longest connection
bounded by a constant w

24

Enumeration: Problem Size

* 10 LUT cluster
» 20 direct connections

. W:A_

25

Enumeration: Problem Size

* 10 LUT cluster e ~
» 20 direct connections

<
"W g w [
Voo-o) |
tl \12.10 4
N al
source LUT target LUT target cluster
=~

~ =
#edges= 10 x 10 x 81
= 8,100 =

ENIEY R K2R

Enumeration: Problem Size

* 10 LUT cluster e ~
» 20 direct connections

<
*W=4 = w LN
Voo-o) |
\T2.10/
- ol
_’/

source LUT target LUT target cluster
=~

~ = ~ =
#edges= 10 x 10 x 81 -
= 8,100 =
Y
#patterns = (87°°) ~ 10%°
&) 06 G
e e, el \e;

ENIEY R K2R

Enumeration: Problem Size

* 10 LUT cluster e ~
» 20 direct connections

<
L] f— . .
W =4 = w | /1 \
Voo-o) |
T 2.10//
- ol
_’/

source LUT target LUT target cluster
=~

~ = ~ =
#edges= 10 x 10 x 81 -
= 8,100 =
Y
#patterns = (87°°) ~ 10%°
&) 06 G
e e, el \e;

Cannot be exhaustive...
L] 2] | 5

A Greedy Approach

Some intuition behind the choice of approach in the paper

26

A Greedy Approach

Some intuition behind the choice of approach in the paper

1. List all additions of a single new direct connection
to the current best pattern
2. Pick the best addition for the next iteration

26

A Greedy Approach

Some intuition behind the choice of approach in the paper

1. List all additions of a single new direct connection
to the current best pattern
2. Pick the best addition for the next iteration

Best pattern = one with the lowest geomean delay

26

A Greedy Approach

Some intuition behind the choice of approach in the paper

1. List all additions of a single new direct connection
to the current best pattern
2. Pick the best addition for the next iteration

Best pattern = one with the lowest geomean delay
= Still prohibitive for testing
(8,100 additions at each iteration = 162,000 architectures in total)

26

A Greedy Approach

Some intuition behind the choice of approach in the paper

1. List all additions of a single new direct connection
to the current best pattern
2. Pick the best addition for the next iteration

Best pattern = one with the lowest geomean delay
= Still prohibitive for testing
(8,100 additions at each iteration = 162,000 architectures in total)

Apply filters to remove weak candidates

26

A Greedy Approach: Filtering

We apply three filters

27

A Greedy Approach: Filtering

We apply three filters

First two designed for speed and try to predict
direct connection utilization, neglecting delay

27

A Greedy Approach: Filtering

We apply three filters

First two designed for speed and try to predict
direct connection utilization, neglecting delay

The third filter permutes LUTs inside their clusters
and updates the postplacement delay prediction accordingly

27

A Greedy Approach: Filtering

We apply three filters

First two designed for speed and try to predict
direct connection utilization, neglecting delay

The third filter permutes LUTs inside their clusters
and updates the postplacement delay prediction accordingly

Details about Filters 1 & 2 in the paper

27

The Third Filter (LUT Permutation)

Maximizing direct connection utilization is hard [1]

(1] T. Werth et al., “DAG Mining for Code Compaction”, Springer, 2009

28

The Third Filter (LUT Permutation)

Maximizing direct connection utilization is hard [1]

Postplacement critical path delay reduction often requires
improving just a small fraction of connection delays

(1] T. Werth et al., “DAG Mining for Code Compaction”, Springer, 2009

28

The Third Filter (LUT Permutation)

Maximizing direct connection utilization is hard [1]

Postplacement critical path delay reduction often requires
improving just a small fraction of connection delays

— extract that fraction and form an ILP
(extract & solve the critical core)

(1] T. Werth et al., “DAG Mining for Code Compaction”, Springer, 2009

28

The Third Filter: Core Extraction

1. Core = all edges with a direct
connection between endpoint
clusters

Timing graph 29

The Third Filter: Core Extraction

1. Core = all edges with a direct
connection between endpoint
clusters

Timing graph 29

The Third Filter: Core Extraction

1. Core = all edges with a direct
connection between endpoint
clusters

2. Remove the edge of largest
slack and least centrality

Timing graph 29

The Third Filter: Core Extraction

1. Core = all edges with a direct
connection between endpoint
clusters

2. Remove the edge of largest
slack and least centrality

Timing graph 29

The Third Filter: Core Extraction

1. Core = all edges with a direct
connection between endpoint
clusters

2. Remove the edge of largest
slack and least centrality

Timing graph 29

The Third Filter: Core Extraction

1. Core = all edges with a direct
connection between endpoint
clusters

2. Remove the edge of largest
slack and least centrality

Timing graph 29

The Third Filter: Core Extraction

1. Core = all edges with a direct
connection between endpoint
clusters

2. Remove the edge of largest
slack and least centrality

3. Crop to nodes on paths
between the core-nodes

Timing graph 29

The Third Filter: Core Extraction

1. Core = all edges with a direct
connection between endpoint
clusters

2. Remove the edge of largest
slack and least centrality

3. Crop to nodes on paths
between the core-nodes

Timing graph 29

The Third Filter: Core Extraction

Timing graph

. Core = all edges with a direct

connection between endpoint
clusters

. Remove the edge of largest

slack and least centrality

. Crop to nodes on paths

between the core-nodes

. Constrain the periphery

29

The Third Filter: Core Extraction

Timing graph

. Core = all edges with a direct

connection between endpoint
clusters

. Remove the edge of largest

slack and least centrality

. Crop to nodes on paths

between the core-nodes

. Constrain the periphery

29

The Third Filter: Core Solving (ILP)

LUT positions:

Vu € Core,p € [O,N]: Xxyp€{0 1}

Timing graph 30

The Third Filter: Core Solving (ILP)

Timing graph

LUT positions:

Vu € Core,p € [O,N]: Xxyp€{0 1}

Edge delays:

V(u,v) € Core, p;, p, € [0, N] :

ta,, = 2_ tup,vp.Xup Xv,p,

30

Experimental Setup

Experimental Setup

k6_N10_mem32K_4onm VTR 7.0 architecture used as underlying
A subset of VTR benchmarks is used
All results medians of 5 placement seeds

Everything routed with delay-targeted routing algorithm [1]

[1] R. Rubin, A. DeHon, “Timing-Driven Pathfinder Pathology and Remediation:
Quantifying and Reducing Delay Noise in VPR-Pathfider”, FPGA'11

31

No support for carry chains, fracturable LUTs, and sparse crossbars
(multipliers and memories supported)

32

Results

Convergence

0.0 0.0
-0.5 Postplacement -0.5 Postrouting
—-1.01 -1.01
-1.51 -1.51
'OE —-2.01 '§' —-2.01
—2.54 -2.51
-3.01 -3.01
—3.51 —-3.51
—4.04 —4.01
i é é 4‘1 _% é % é é lb 1‘1 1‘2 1‘3 1‘4 1‘5 1‘6 1‘7 1‘8 1‘9 2‘0 i i é A‘l .;, é % é é 1‘0 1‘1 1‘2 1‘3 1‘4 1‘5 1‘6 1‘7 1‘8 1‘9 2‘0
#direct connections # direct connections

Evolution of geomean delay change with addition of direct connections
33

II [_}
-8

NG 09 > 0 0‘3 ’L‘% S o o o (o (B0
S e(Q' < 5@ 6\"‘ o(\,’L (\(\ % @\ q\s\o \9\00\,\9\00\)06‘ 0239@

‘0/ D) \ o(0 eo &
oo- 7 < D ((\e \“ ‘e‘ o e

o e 34

35

0

88888

f=
o
%
o
Q
=
-

The Pattern

p ~ 1% cluster area increase
<

f
(
f

\i

\—J/\if/r

o & oo
ALY

35

The Pattern

I

7

(

|

\—J/\if/r

o & oo

ALY

\i

~ 1% cluster area increase

Broadcasting all 14 connections to all 60
crossbar muxes (cluster-cluster case)
would cost a lot more

35

The Pattern

Red edges = first four added

f
(
f

\i

7

o & oo
ALY

36

The Pattern

I

7

(

|

o & oo

ALY

\i

Red edges = first four added

68% achieved delay improvement for
< 0.3% cluster area increase

0.0

-0.5

-1.0

-15

-2.0

1%]

=25

-3.0

-3.5

-4.0

H H
123 456 7 8 91011121314151617 181920
#direct connections

36

The Pattern

I

7

(

|

o & oo

ALY

\i

Red edges = first four added

68% achieved delay improvement for
< 0.3% cluster area increase

Any usage forms a matching in the circuit
— possibly easy mapping

36

Two-Stage Search

\ A\

\ AN

First stage: intercluster (global) connections
37

Two-Stage Search

Y1 (Y] (Y]
Y1 (Y] [Y]
Y] (Y] [Y]

—

Second stage: intracluster (local) connections

37

Convergence: Intracluster

0.0

global only

Postplacement

#local direct connections

0.0

global only

Postrouting

#local direct connections

Local connections added on top of existing global ones

38

Convergence: Intracluster

[%]

0.0 0.0
-0.5 Postplacement -0.5
—-1.01 -1.01
-1.51 -1.51
—-2.01 '§' —-2.01
—2.54 -2.51
—3.01 | global only —3.04
—4.04 —4.0 4

[
N A

global only

Postrouting

#local direct connections

Not that appealing...

#local direct connections

38

Conclusions and Future Work

Complex wire hardening pays off!

Developed an efficient algorithm that finds good patterns to harden

39

How much further could we go if we had dedicated CAD tools?

40

Thank you for attention

	one
	Motivation
	The Main Questions

	two
	Which Patterns?
	Exploration Philosophy
	The Search Algorithm
	Experimental Setup
	Results
	Conclusions and Future Work

