
Straight to the Point: Intra- and Intercluster LUT Connections
to Mitigate the Delay of Programmable Routing

S. Nikolić, G. Zgheib*, and P. Ienne
FPGA’20, Seaside, 24.02.2020

École Polytechnique Fédérale de Lausanne
*Intel Corporation

Interconnect Doesn’t Scale Very Well...

Xilinx Adaptive Compute Acceleration Platform: Versal™
Architecture

Brian Gaide, Dinesh Gaitonde, Chirag Ravishankar, Trevor Bauer
bgaide@xilinx.com,dineshg@xilinx.com,chiragr@xilinx.com,trevor@xilinx.com

Xilinx Inc.

ABSTRACT
In this paper we describe Xilinx’s Versal™ Adaptive Compute Accel-
eration Platform (ACAP). ACAP is a hybrid compute platform that
tightly integrates traditional FPGA programmable fabric, software
programmable processors and software programmable accelerator
engines. ACAP improves over the programmability of traditional
reconfigurable platforms by introducing newer compute models in
the form of software programmable accelerators and by separating
out the data movement architecture from the compute architecture.
The Versal architecture includes a host of new capabilities, includ-
ing a chip-pervasive programmable Network-on-Chip (NoC), Imux
Registers, compute shell, more advanced SSIT, adaptive deskew of
global clocks, faster configuration, and other new programmable
elements as well as enhancements to the CLB and interconnect.
We discuss these architectural developments and highlight their
key motivations and differences in relation to traditional FPGA
architectures.

KEYWORDS
ACAP, Versal, FPGA, Stacked Silicon, SSIT, Adaptable Compute Ac-
celeration Platform, Math Engine, NoC, FPGA Architecture, FPGA
CAD, Xilinx
ACM Reference Format:
Brian Gaide, Dinesh Gaitonde, Chirag Ravishankar, Trevor Bauer. 2019.
Xilinx Adaptive Compute Acceleration Platform: Versal™ Architecture.
In Proceedings of The 2019 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA ’19). ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3289602.3293906

1 INTRODUCTION
It is well known that the benefits of process technology scaling are
reducing [1]. The benefits of a new technology node alone are often
insufficient to justify the development costs of a next generation
device, forcing more aggressive innovations at the architectural and
system levels [2, 3]. With the recent explosion of data and surge
of machine learning and AI applications, the needs for compute
have also been increasing. Due to the high costs of sub-16nm tech-
nology nodes and the continually changing requirements of these
applications, developing ASICs for these markets is challenging. By

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
FPGA ’19, February 24–26, 2019, Seaside, CA, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6137-8/19/02. . . $15.00
https://doi.org/10.1145/3289602.3293906

Figure 1: Metal and Transistor Delays For a Quad Routing
ResourceAcrossDifferent TechnologyNodes (normalized to
total delay at 28nm)

virtue of their configurable nature, field-programmable gate arrays
excel in applications with varying workloads and requirements,
circumventing the economic challenges of heterogeneous compute
platforms with reconfigurable hardware [4]. FPGA platforms have
recently been deployed on the cloud to democratize these systems
at a larger scale [5–8].

Many compute intensive solutions today operate in a thermal
envelope and are thus power limited. Although power and delay
per operation drop with technology scaling, they no longer drop
at a rate that satisfies exponentially increasing compute demands.
Metal resistance is another critical challenge that has worsened
with technology scaling [9]. Although wire distances shrink with
lithography, wire cross-sectional area shrinks quadratically, result-
ing in a net increase in resistance each generation. Hence, even
though transistor delays continue to decrease with smaller transis-
tors, total path delays may not. In Figure 1, we show the minimum
wire pitch delay of an interconnect routing resource over several
technology nodes assuming that the physical distance of a given
logical span also scales. Despite the physical distance shrink and
transistor delay speed up, total delay actually increases with more
advanced process nodes. Hence, we are forced to use thicker metal
with lower resistance to reduce wire delays. As technology scales,
metal resources therefore become more expensive and architectural
changes need to be made to use them more efficiently.

One of the hurdles to greater adoption of traditional FPGA ar-
chitectures is ease of use. Recently, there has been a drive towards
software solutions to improve the user abstraction level to inter-
act with FPGAs [10]. However, wide-spread use of re-configurable
hardware without the requirement for expertise remains elusive.

Session 3: Computing Architectures FPGA ’19, February 24–26, 2019, Seaside, CA, USA

84

2

A Typical Connection

LUT LUT LUT LUT

LUT LUT LUT LUT

Quite a few transistors...

Start by removing (some of) them?

3

A Typical Connection

LUT LUT LUT LUT

LUT LUT LUT LUT Quite a few transistors...

Start by removing (some of) them?

3

A Typical Connection

LUT LUT LUT LUT

LUT LUT LUT LUT Quite a few transistors...

Start by removing (some of) them?

3

A Typical Connection

LUT LUT LUT

LUT LUT LUT

LUT

LUT Quite a few transistors...

Start by removing (some of) them?

3

Back to the Future?

XC4000 [1]

Triptych [3]

UTFPGA1 [2]

[1] H.-C. Hsieh, W. S. Carter, J. Ja, E. Cheung, S. Schreifels, C. Erickson, P. Freidin,
 L. Tinkey, and R. Kanazawa. Third-generation architecture boosts speed and
 density of field-programmable gate arrays, 1990

[2] P. Chow, S. O. Seo, D. Au, B. Fallah, C. Li, and J. Rose. A 1.2um CMOS FPGA
 using cascaded logic blocks and segmented routing, 1991

[3] C. Ebeling, G. Borriello, S. A. Hauck, D. Song, E. A. Walkup. TRIPTYCH: A New
FPGA Architecture, 1991 4

Not So Fast...

1990

1991

1991

[1] H.-C. Hsieh, W. S. Carter, J. Ja, E. Cheung, S. Schreifels, C. Erickson, P. Freidin,
 L. Tinkey, and R. Kanazawa. Third-generation architecture boosts speed and
 density of field-programmable gate arrays, 1990

[2] P. Chow, S. O. Seo, D. Au, B. Fallah, C. Li, and J. Rose. A 1.2um CMOS FPGA
 using cascaded logic blocks and segmented routing, 1991

[3] C. Ebeling, G. Borriello, S. A. Hauck, D. Song, E. A. Walkup. TRIPTYCH: A New
FPGA Architecture, 1991 5

Not So Fast...

Directional and Single-Driver Wires in FPGA Interconnect

Anthony Yu Guy Lemieux Edmund Lee Marvin Tom
Department of ECE, University of British Columbia

Vancouvec BC, Canada

E-mail: { lemieux \ ed?.yl 1 marvint 1 anthonyy } B ece.ubc.ca

Abstract

Modem FPGA architectures from Altera and Xil-
inx have shfled away from allowing multiple drivers
to connect to each interconnect wire. This paper ad-
vocates the need for this ship to single-driver wiring
by investigating the necessary architectural and cir-
cuit design changes. When single-driver wiring is
used, area improves by 25%. delay improves by 9%
and area-delay improves by 32% compared to bidi-
rectional wiring. Wiring capacitance is reduced by
37% due to reducedswitch loading andphysical wire
length shrinkage. Furthermore, it is shown that larger
circuits tend to realize larger savings. No sign$cant
CAD tool changes are needed.

1. Introduction

To support larger logic capacities, FPGAs must be
built with more logic elements and larger intercon-
nection networks. The interconnection network typ-
ically dominates in all key metrics: area, delay, and
power. To extract every bit of performance. it is nec-
essary to consider both implementation details and ar-
chitectural efficiency. In this paper. we consider two
circuit-oriented optimizations that will impact FPGA
architecture and improve both area and delay.

The first optimization is the policy of creating di-
rectional wires. Conventional bidirectional wires are
connected with bidirectional switches, e.g. two back-
to-back tristate drivers. However. once configured,
an FPGA always uses the switch in only one direc-
tion. This leaves at least 508 of all tristate drivers
un-utilized. With directional wires. drivers are needed
in only one direction. They will be more highly uti-
lized if the number of wires in each direction closely
matches the number of nets travelling in the same di-
rection. This work shows that unmodified CAD tools
can automatically achieve high utilization in both di-
rections.

The second optimization considered in this paper
is the strict use of single-driver wiring, where there
is only one driver for every interconnect wire. This

Figure 1. Bidirectional and directional wires.

means that tristate drivers are replaced with regular
(non-tristate) drivers. This can reduce area overhead
(the transistors implementing the tristate ability are re-
moved) and improve drive strength (for a fixed driver
size). However, to achieve routing flexibility, these
drivers must have some type of selection ability on
the input, e.g., using a multiplexer. This multiplexer
selects from all possible sources, including both con-
nections inside the switch block as well as the CLB
outputs. Since this multiplexer will have many in-
puts, it introduces delay overhead. This work shows
that single-driver wiring results in net improvements
to both area and delay.

A comparison of bidirectional wires and directional
wires is shown in Figure 1. Notice the maximum-
possible number of wires in each direction is the same.
However, for the same total number of drivers, di-
rectional wiring provides twice as many total wires
as bidirectional wiring. Unfortunately. this also in-
creases the amount of area needed for connections
tolfrom the configurdble logic blocks (CLBs). To save
area, there musf be fewer than twice as many direc-
tional wires as bidirectional wires. The amount that
can be reduced depends upon what fraction of sig-
nals are flowing in each direction. This work shows a
large net area savings because directional and bidirec-
tional wiring needs approximately the same number
of tracks.

The use of single-driver wiring also requires two
important changes to the detailed routing architect-
ure. First, CLB outputs can only be driven onto wires

0-7803-8652-3/04/$20.00 0 2004 IEEE 41 ICFPT 2004

FPT’04

Abstract

In this paper, we investigate the speed and area-efficiency of
FPGAs employing “logic clusters” containing multiple LUTs and
registers as their logic block. We introduce a new, timing-driven
tool (T-VPack) to “pack” LUTs and registers into these logic
clusters, and we show that this algorithm is superior to an existing
packing algorithm. Then, using a realistic routing architecture and
sophisticated delay and area models, we empirically evaluate
FPGAs composed of clusters ranging in size from one to twenty
LUTs, and show that clusters of size seven through ten provide the
best area-delay trade-off. Compared to circuits implemented in an
FPGA composed of size one clusters, circuits implemented in an
FPGA with size seven clusters have 30% less delay (a 43% increase
in speed) and require 8% less area, and circuits implemented in an
FPGA with size ten clusters have 34% less delay (a 52% increase in
speed), and require no additional area.

1. Intr oduction
Much of the speed and area-efficiency of an FPGA is determined by
the logic block it employs. If a very small, or fine-grained, logic
block is used, many connections must be routed between the
numerous logic blocks [Rose93]. Since routing consumes most of
the area and accounts for most of the delay in FPGAs, a small logic
block often results in poor area-efficiency and speed due to the
excessive routing required to connect all the logic blocks. If, on the
other hand, a very large, or coarse-grained, logic block is employed,
the logic block area and delay may become excessive, again result-
ing in poor area-efficiency and speed [Rose93]. Choosing the best
size, or granularity, for an FPGA logic block therefore involves bal-
ancing complex trade-offs.

In this work we determine the best size for “cluster-based” logic
blocks, which we refer to as “logic clusters”. This style of logic
block is of interest for several reasons. First, the Altera Flex series
FPGAs [Alte98], the Xilinx 5200 and Virtex FPGAs [Xili97,
Xili98], and the Vantis VF1 FPGAs [Vant98] all employ cluster-
based logic blocks, so research concerning the best size of logic
clusters is of clear commercial interest. Second, prior research
[Betz98a] has shown that the area-efficiency of large logic clusters

is quite competitive with that of FPGAs using single look-up table
(LUT) logic blocks. Third, an FPGA composed of large logic clus-
ters requires fewer logic blocks to implement a circuit than an
FPGA using a more fine-grained block. This reduces the size of the
placement and routing problem, and hence design compile time —
an increasingly important concern as the logic capacity of FPGAs
rises. Finally, we show in this paper that cluster-based logic blocks
can improve FPGA speed compared to single-LUT logic blocks by
reducing the number of connections on the critical path that must be
routed between logic blocks.

Prior research [Betz98a] has focused only on the area-efficiency of
different sizes of logic clusters. In this work, we simultaneously
examine both the area-efficiency and the speed of FPGAs using dif-
ferent logic cluster sizes. Since both speed and density are crucial in
modern FPGAs, only by examining both issues can we determine
the best logic cluster size. As well, we use a more complex and
realistic routing architecture than [Betz98a] in our investigations,
leading to more accurate architectural conclusions. Finally, we
present a new, timing-driven algorithm (T-VPack) to “pack” cir-
cuitry into logic clusters. Relative to prior work [Betz97a], this new
algorithm not only improves circuit speed, but also reduces the total
amount of routing required between logic blocks, resulting in
improved area-efficiency.

This paper is organized as follows. Section2 introduces the struc-
ture of cluster-based logic blocks. In Section3 we outline the
experimental methodology used to evaluate the utility of different
cluster sizes. Then, in Section4 we explain why the area-delay
product is useful for evaluating the quality of each architecture.
Next, Section5 describes the FPGA architecture and timing models
used in our experiments. Section6 describes a new timing-driven
logic block packing algorithm (T-VPack) and explains the enhance-
ments it contains relative to an earlier CAD tool, VPack. In
Section7 we present experimental results comparing VPack and T-
VPack, and the effect of various cluster sizes on FPGA area and
delay. Section8 discusses potential sources of inaccuracies. Finally,
in Section9 we present our conclusions.

2. Cluster -Based Logic Bloc ks
Cluster-based logic blocks, orlogic clusters are a generalized ver-
sion of the Logic Array Blocks used in Altera’s FLEX 8K and
FLEX 10K parts [Alte98]. Figure1-a shows the structure of abasic
logic element or BLE [Betz98a] which consists of a 4-LUT plus a
flip-flop. A logic cluster consists of one or more BLEs, plus the
local routing required to connect them together. Figure1-b shows
how the BLEs are connected. For clusters of size greater than one,
the architecture used is fully connected: each BLE input can be
connected to any of the cluster inputs or to the output of any of the
BLEs within the cluster. Clusters of size one (i.e. a cluster contain-

Using Cluster -Based Logic Bloc ks and Timing-Driven
Packing to Impr ove FPGA Speed and Density

Alexander (Sandy) Marquardt, Vaughn Betz, and Jonathan Rose
Department of Electrical and Computer Engineering

University of Toronto
Toronto, ON, Canada M5S 3G4

{arm,vaughn,jayar}@eecg.toronto.edu

FPGA’99 6

Not So Fast...

All these patterns are very simple

Do they really achieve all of the
hardening potential?

7

Not So Fast...

All these patterns are very simple

Do they really achieve all of the
hardening potential?

7

In This Work

Does it make sense to harden complex patterns to reduce delay?

• Yes, it does

How should these patterns look like?

• We give an algorithm

8

In This Work

Does it make sense to harden complex patterns to reduce delay?

• Yes, it does

How should these patterns look like?

• We give an algorithm

8

Outline

Motivation

The Main Questions
Which Patterns?

Exploration Philosophy

The Search Algorithm

Experimental Setup

Results

Conclusions and Future Work

9

Which Patterns?

Issues With Full Hardening

(Slightly) more complex pattern, could be too constraining

10

Issues With Full Hardening

(Slightly) more complex pattern, could be too constraining

10

Issues With Full Hardening: A Solution?

11

Issues With Full Hardening: A Solution?
Intel® Stratix® 10 Logic Array Blocks
and Adaptive Logic Modules User
Guide

Subscribe
Send Feedback

UG-S10LAB | 2018.09.21
Latest document on the web: PDF | HTML

3. Intel Stratix 10 LAB and ALM Architecture and Features
The following sections describe the LAB and ALM for Intel Stratix 10 devices.

3.1. LAB

The LABs are configurable logic blocks that consist of a group of logic resources. Each
LAB contains dedicated logic for driving control signals to its ALMs. The MLAB is a
superset of the LAB and includes all the LAB features. There are a total of 10 ALMs in
each LAB, as shown in the LAB and MLAB Structure for Intel Stratix 10 Devices figure.

Figure 1. Intel Stratix 10 LAB Structure and Interconnects Overview
This figure shows an overview of the Intel Stratix 10 LAB and MLAB structure with the LAB interconnects.

Direct-Link
Interconnect from
Adjacent Block

Direct-Link
Interconnect to
Adjacent Block

Row Interconnects of
Variable Speed and Length

Column Interconnects of
Variable Speed and LengthLocal Interconnect is Driven

from Either Side by Column Interconnects and LABs,
and from Above by Row Interconnects

Local
Interconnect

LAB

Direct-Link
Interconnect from

Adjacent Block

Direct-Link
Interconnect to
Adjacent Block

ALMs

MLAB

C2/C3/C4 C16

R24

R10/R4/R2

Related Information

MLAB on page 5

3.1.1. MLAB

Each MLAB supports a maximum of 640 bits of simple dual-port SRAM. You can
configure each ALM in an MLAB as a 32 (depth) x 2 (width) memory block, resulting in
a configuration of 32 (depth) x 20 (width) simple dual-port SRAM block.

UG-S10LAB | 2018.09.21

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

Issues With Full Hardening: A Solution?

Delay of the crossbar not eliminated

12

Issues With Full Hardening: A Solution?

High cost of broadcasting

13

Issues With Full Hardening: A Compromise

Each direct connection is decoupled by a multiplexer
[1] X. Tang, P.-E. Gaillardon, G. De Micheli, “Pattern-based FPGA logic block and clustering algorithm”, FPL’14
[2] W. Feng, J. Greene, A. Mishchenko, “Improving FPGA Performance with a S44 LUT Structure”, FPGA’18
[3] B. Gaide, et al., “Xilinx Adaptive Compute Acceleration Platform: Versal™Architecture”, FPGA’19 14

Issues With Full Hardening: A Compromise

We use this approach

15

Which Patterns?

• All the programmable interconnect flexibility retained at a minimal cost

• No placement constraints

• All existing CAD tools still work (if suboptimally)

16

Which Patterns?

• All the programmable interconnect flexibility retained at a minimal cost

• No placement constraints

• All existing CAD tools still work (if suboptimally)

16

Which Patterns?

• All the programmable interconnect flexibility retained at a minimal cost

• No placement constraints

• All existing CAD tools still work (if suboptimally)

16

Exploration Philosophy

The Starting Premise

Circuits exhibit recurring patterns of interconnect

17

The Starting Premise

placed circuitscircuits
pattern-aware
placement algorithm

pattern
search algorithm

Circuits exhibit recurring patterns of interconnect

18

The Starting Premise

Circuits exhibit recurring patterns of interconnect

19

The Starting Premise

Placed circuits exhibit recurring patterns of interconnect

19

Opportunistic Direct Connection Usage

placed circuits
circuits

normal
placement algorithm

patternsearch algorithm

Placed circuits exhibit recurring patterns of interconnect

Pros:

• No need for new CAD
• No placement in the loop

Cons:

• Some opportunities
certainly missed

20

Opportunistic Direct Connection Usage

placed circuits
circuits

normal
placement algorithm

patternsearch algorithm

Placed circuits exhibit recurring patterns of interconnect

Pros:

• No need for new CAD
• No placement in the loop

Cons:

• Some opportunities
certainly missed

20

Opportunistic Direct Connection Usage: A Real Example (sha)

LU
T
1

LU
T
2

LU
T
N

LU
T
1

LU
T
2

LU
T
N

21

Opportunistic Direct Connection Usage: A Real Example (sha)

A
LU

T
2

LU
T
N

LU
T
1
B

LU
T
N

A

B

21

Opportunistic Direct Connection Usage: A Real Example (sha)

A
LU

T
2

LU
T
N

B
LU

T
N

A

B

LU
T
2

21

only to adjust top spacing

Opportunistic Direct Connection Usage: A Real Example (sha)

Before Permutation After Permutation

We modify placement inside clusters to maximize coverage
(The only departure from the purely opportunistic approach)

only to adjust top spacing

Opportunistic Direct Connection Usage: A Real Example (sha)

Before Permutation After Permutation

We modify placement inside clusters to maximize coverage
(The only departure from the purely opportunistic approach)

The Search Algorithm

General approach = enumerate + test

Enumeration: Some Constraints

• Pattern is the same for each tile

• (Chebyshev) length of the longest connection
bounded by a constant w

24

Enumeration: Problem Size

• 10 LUT cluster
• 20 direct connections
• w = 4

#edges =
source LUT︷︸︸︷
10 ×

target LUT︷︸︸︷
10 ×

target cluster︷︸︸︷
81

= 8,100

#patterns =
(8,100

20
)
∼ 1059

Cannot be exhaustive...

w = 4w = 4

w
 =

 4
w

 =
 4

1 2..10

1 2

1 2

e1 e2

21

21

e1 e2

25

Enumeration: Problem Size

• 10 LUT cluster
• 20 direct connections
• w = 4

#edges =
source LUT︷︸︸︷
10 ×

target LUT︷︸︸︷
10 ×

target cluster︷︸︸︷
81

= 8,100

#patterns =
(8,100

20
)
∼ 1059

Cannot be exhaustive...

w = 4w = 4

w
 =

 4
w

 =
 4

1 2..10

1 2

1 2

e1 e2

21

21

e1 e2

25

Enumeration: Problem Size

• 10 LUT cluster
• 20 direct connections
• w = 4

#edges =
source LUT︷︸︸︷
10 ×

target LUT︷︸︸︷
10 ×

target cluster︷︸︸︷
81

= 8,100

#patterns =
(8,100

20
)
∼ 1059

Cannot be exhaustive...

w = 4w = 4

w
 =

 4
w

 =
 4

1 2..10

1 2

1 2

e1 e2

21

21

e1 e2

25

Enumeration: Problem Size

• 10 LUT cluster
• 20 direct connections
• w = 4

#edges =
source LUT︷︸︸︷
10 ×

target LUT︷︸︸︷
10 ×

target cluster︷︸︸︷
81

= 8,100

#patterns =
(8,100

20
)
∼ 1059

Cannot be exhaustive...

w = 4w = 4

w
 =

 4
w

 =
 4

1 2..10

1 2

1 2

e1 e2

21

21

e1 e2

25

A Greedy Approach

Some intuition behind the choice of approach in the paper

1. List all additions of a single new direct connection
to the current best pattern

2. Pick the best addition for the next iteration

Best pattern = one with the lowest geomean delay
=⇒ Still prohibitive for testing
(8,100 additions at each iteration =⇒ 162,000 architectures in total)

Apply filters to remove weak candidates

26

A Greedy Approach

Some intuition behind the choice of approach in the paper

1. List all additions of a single new direct connection
to the current best pattern

2. Pick the best addition for the next iteration

Best pattern = one with the lowest geomean delay
=⇒ Still prohibitive for testing
(8,100 additions at each iteration =⇒ 162,000 architectures in total)

Apply filters to remove weak candidates

26

A Greedy Approach

Some intuition behind the choice of approach in the paper

1. List all additions of a single new direct connection
to the current best pattern

2. Pick the best addition for the next iteration

Best pattern = one with the lowest geomean delay

=⇒ Still prohibitive for testing
(8,100 additions at each iteration =⇒ 162,000 architectures in total)

Apply filters to remove weak candidates

26

A Greedy Approach

Some intuition behind the choice of approach in the paper

1. List all additions of a single new direct connection
to the current best pattern

2. Pick the best addition for the next iteration

Best pattern = one with the lowest geomean delay
=⇒ Still prohibitive for testing
(8,100 additions at each iteration =⇒ 162,000 architectures in total)

Apply filters to remove weak candidates

26

A Greedy Approach

Some intuition behind the choice of approach in the paper

1. List all additions of a single new direct connection
to the current best pattern

2. Pick the best addition for the next iteration

Best pattern = one with the lowest geomean delay
=⇒ Still prohibitive for testing
(8,100 additions at each iteration =⇒ 162,000 architectures in total)

Apply filters to remove weak candidates
26

A Greedy Approach: Filtering

We apply three filters

First two designed for speed and try to predict
direct connection utilization, neglecting delay

The third filter permutes LUTs inside their clusters
and updates the postplacement delay prediction accordingly

Details about Filters 1 & 2 in the paper

27

A Greedy Approach: Filtering

We apply three filters

First two designed for speed and try to predict
direct connection utilization, neglecting delay

The third filter permutes LUTs inside their clusters
and updates the postplacement delay prediction accordingly

Details about Filters 1 & 2 in the paper

27

A Greedy Approach: Filtering

We apply three filters

First two designed for speed and try to predict
direct connection utilization, neglecting delay

The third filter permutes LUTs inside their clusters
and updates the postplacement delay prediction accordingly

Details about Filters 1 & 2 in the paper

27

A Greedy Approach: Filtering

We apply three filters

First two designed for speed and try to predict
direct connection utilization, neglecting delay

The third filter permutes LUTs inside their clusters
and updates the postplacement delay prediction accordingly

Details about Filters 1 & 2 in the paper

27

The Third Filter (LUT Permutation)

Maximizing direct connection utilization is hard [1]

Postplacement critical path delay reduction often requires
improving just a small fraction of connection delays

=⇒ extract that fraction and form an ILP
(extract & solve the critical core)

[1] T. Werth et al., “DAG Mining for Code Compaction”, Springer, 2009

28

The Third Filter (LUT Permutation)

Maximizing direct connection utilization is hard [1]

Postplacement critical path delay reduction often requires
improving just a small fraction of connection delays

=⇒ extract that fraction and form an ILP
(extract & solve the critical core)

[1] T. Werth et al., “DAG Mining for Code Compaction”, Springer, 2009

28

The Third Filter (LUT Permutation)

Maximizing direct connection utilization is hard [1]

Postplacement critical path delay reduction often requires
improving just a small fraction of connection delays

=⇒ extract that fraction and form an ILP
(extract & solve the critical core)

[1] T. Werth et al., “DAG Mining for Code Compaction”, Springer, 2009

28

The Third Filter: Core Extraction

Timing graph

1. Core = all edges with a direct
connection between endpoint
clusters

2. Remove the edge of largest
slack and least centrality

3. Crop to nodes on paths
between the core-nodes

4. Constrain the periphery

29

The Third Filter: Core Extraction

Timing graph

1. Core = all edges with a direct
connection between endpoint
clusters

2. Remove the edge of largest
slack and least centrality

3. Crop to nodes on paths
between the core-nodes

4. Constrain the periphery

29

The Third Filter: Core Extraction

Timing graph

1. Core = all edges with a direct
connection between endpoint
clusters

2. Remove the edge of largest
slack and least centrality

3. Crop to nodes on paths
between the core-nodes

4. Constrain the periphery

29

The Third Filter: Core Extraction

Timing graph

1. Core = all edges with a direct
connection between endpoint
clusters

2. Remove the edge of largest
slack and least centrality

3. Crop to nodes on paths
between the core-nodes

4. Constrain the periphery

29

The Third Filter: Core Extraction

Timing graph

1. Core = all edges with a direct
connection between endpoint
clusters

2. Remove the edge of largest
slack and least centrality

3. Crop to nodes on paths
between the core-nodes

4. Constrain the periphery

29

The Third Filter: Core Extraction

Timing graph

1. Core = all edges with a direct
connection between endpoint
clusters

2. Remove the edge of largest
slack and least centrality

3. Crop to nodes on paths
between the core-nodes

4. Constrain the periphery

29

The Third Filter: Core Extraction

Timing graph

1. Core = all edges with a direct
connection between endpoint
clusters

2. Remove the edge of largest
slack and least centrality

3. Crop to nodes on paths
between the core-nodes

4. Constrain the periphery

29

The Third Filter: Core Extraction

Timing graph

1. Core = all edges with a direct
connection between endpoint
clusters

2. Remove the edge of largest
slack and least centrality

3. Crop to nodes on paths
between the core-nodes

4. Constrain the periphery

29

The Third Filter: Core Extraction

Timing graph

1. Core = all edges with a direct
connection between endpoint
clusters

2. Remove the edge of largest
slack and least centrality

3. Crop to nodes on paths
between the core-nodes

4. Constrain the periphery

29

The Third Filter: Core Extraction

Timing graph

1. Core = all edges with a direct
connection between endpoint
clusters

2. Remove the edge of largest
slack and least centrality

3. Crop to nodes on paths
between the core-nodes

4. Constrain the periphery

29

The Third Filter: Core Solving (ILP)

Timing graph

LUT positions:

∀u ∈ Core,p ∈ [0,N] : xu,p ∈ {0, 1}

Edge delays:

∀(u, v) ∈ Core,p1,p2 ∈ [0,N] :
tdu,v =

∑
tup1,vp2xu,p1xv,p2

30

The Third Filter: Core Solving (ILP)

Timing graph

LUT positions:

∀u ∈ Core,p ∈ [0,N] : xu,p ∈ {0, 1}

Edge delays:

∀(u, v) ∈ Core,p1,p2 ∈ [0,N] :
tdu,v =

∑
tup1,vp2xu,p1xv,p2

30

Experimental Setup

Experimental Setup

k6_N10_mem32K_40nm VTR 7.0 architecture used as underlying

A subset of VTR benchmarks is used

All results medians of 5 placement seeds

Everything routed with delay-targeted routing algorithm [1]

[1] R. Rubin, A. DeHon, “Timing-Driven Pathfinder Pathology and Remediation:

Quantifying and Reducing Delay Noise in VPR-Pathfider”, FPGA’11

31

Limitations

No support for carry chains, fracturable LUTs, and sparse crossbars
(multipliers and memories supported)

32

Results

Convergence

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

[%
]

#direct connections

Postplacement

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

[%
]

direct connections

Postrouting

Evolution of geomean delay change with addition of direct connections
33

Delay Impact

sha

blob_merge

raygentop
diffe

q1
diffe

q2
or1200

ch_intrin
sics

LU8PEEng

mkPktMerge

mkDelayWorker32B

stereovisio
n1

stereovisio
n0

stereovisio
n2

boundtop bgm

mkSMAdapter4B
8

7

6

5

4

3

2

1

0

1

[%
]

34

The Pattern

0
1

2
3

4
5

6
7

8
9

∼ 1% cluster area increase

Broadcasting all 14 connections to all 60
crossbar muxes (cluster-cluster case)
would cost a lot more

35

The Pattern

0
1

2
3

4
5

6
7

8
9

∼ 1% cluster area increase

Broadcasting all 14 connections to all 60
crossbar muxes (cluster-cluster case)
would cost a lot more

35

The Pattern

0
1

2
3

4
5

6
7

8
9

∼ 1% cluster area increase

Broadcasting all 14 connections to all 60
crossbar muxes (cluster-cluster case)
would cost a lot more

35

The Pattern

0
1

2
3

4
5

6
7

8
9

Red edges = first four added

68% achieved delay improvement for
< 0.3% cluster area increase

Any usage forms a matching in the circuit
=⇒ possibly easy mapping

36

The Pattern

0
1

2
3

4
5

6
7

8
9

Red edges = first four added

68% achieved delay improvement for
< 0.3% cluster area increase

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

[%
]

#direct connections

Any usage forms a matching in the circuit
=⇒ possibly easy mapping

36

The Pattern

0
1

2
3

4
5

6
7

8
9

Red edges = first four added

68% achieved delay improvement for
< 0.3% cluster area increase

Any usage forms a matching in the circuit
=⇒ possibly easy mapping

36

Two-Stage Search

First stage: intercluster (global) connections
37

Two-Stage Search

Second stage: intracluster (local) connections
37

Convergence: Intracluster

1 2 3 4 5 6

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

[%
]

global only

#local direct connections

Postplacement

1 2 3 4 5 6

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

[%
]

global only

#local direct connections

Postrouting

Local connections added on top of existing global ones
38

Convergence: Intracluster

1 2 3 4 5 6

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

[%
]

global only

#local direct connections

Postplacement

1 2 3 4 5 6

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

[%
]

global only

#local direct connections

Postrouting

Not that appealing...
38

Conclusions and Future Work

Conclusions

Complex wire hardening pays off!

Developed an efficient algorithm that finds good patterns to harden

39

Future Work

How much further could we go if we had dedicated CAD tools?

40

Thank you for attention

	one
	Motivation
	The Main Questions

	two
	Which Patterns?
	Exploration Philosophy
	The Search Algorithm
	Experimental Setup
	Results
	Conclusions and Future Work

