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ABSTRACT
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In this paper we describe Xilinx’s Versal™ Adaptive Compute Accel- g = Mctzl Delay Y
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programmable processors and software programmable accelerator 3 0.75
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Quite a few transistors...

Start by removing (some of) them?
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LUT Quite a few transistors...

Start by removing (some of) them?
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Not So Fast...

All these patterns are very simple Eﬁgﬂ

Do they really achieve all of the
hardening potential? /A




Does it make sense to harden complex patterns to reduce delay?

How should these patterns look like?



Does it make sense to harden complex patterns to reduce delay?

. Yes, it does

How should these patterns look like?

. We give an algorithm
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Issues With Full Hardening
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Issues With Full Hardening

(Slightly) more complex pattern, could be too constraining

10



Issues With Full Hardening: A Solution?

1"
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Intel® Stratix® 10 Logic Array Blocks
and Adaptive Logic Modules User
Guide
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Issues With Full Hardening: A Solution?

Delay of the crossbar not eliminated
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Issues With Full Hardening: A Solution?

High cost of broadcasting
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Issues With Full Hardening: A Compromise

. | =

Each direct connection is decoupled by a multiplexer

(1] X. Tang, P-E. Gaillardon, G. De Micheli, “Pattern-based FPGA logic block and clustering algorithm”, FPL'14
[2] W. Feng, J. Greene, A. Mishchenko, “Improving FPGA Performance with a S44 LUT Structure”, FPGA'18
[3] B. Gaide, et al., “Xilinx Adaptive Compute Acceleration Platform: Versal™Architecture”, FPGA19 1%



Issues With Full Hardening: A Compromise
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We use this approach
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Which Patterns?

« All the programmable interconnect flexibility retained at a minimal cost
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Which Patterns?

« All the programmable interconnect flexibility retained at a minimal cost
* No placement constraints

« All existing CAD tools still work (if suboptimally)
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The Starting Premise

Circuits exhibit recurring patterns of interconnect
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The Starting Premise

Placed circuits exhibit recurring patterns of interconnect
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Opportunistic Direct Connection Usage

Placed circuits exhibit recurring patterns of interconnect

normal placed circuits -
placement algorithm > search algorithm —pattern

circuits —>|
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Opportunistic Direct Connection Usage

Placed circuits exhibit recurring patterns of interconnect

normal placed circuits -
placement algorithm > search algorithm —pattern

circuits —>|

Pros: Cons:

* No need for new CAD « Some opportunities
 No placement in the loop certainly missed
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Opportunistic Direct Connection Usage: A Real Example (sha)
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Opportunistic Direct Connection Usage: A Real Example (sha)
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Opportunistic Direct Connection Usage: A Real Example (sha)
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The Search Algorithm




General approach = enumerate + test



Enumeration: Some Constraints

+ Pattern is the same for each tile

+ (Chebyshev) length of the longest connection
bounded by a constant w
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Enumeration: Problem Size

* 10 LUT cluster
» 20 direct connections

. W:A_
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Enumeration: Problem Size

* 10 LUT cluster e ~
» 20 direct connections
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A Greedy Approach

Some intuition behind the choice of approach in the paper
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A Greedy Approach

Some intuition behind the choice of approach in the paper

1. List all additions of a single new direct connection
to the current best pattern
2. Pick the best addition for the next iteration

Best pattern = one with the lowest geomean delay
= Still prohibitive for testing
(8,100 additions at each iteration = 162,000 architectures in total)

Apply filters to remove weak candidates

26



A Greedy Approach: Filtering

We apply three filters
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direct connection utilization, neglecting delay

The third filter permutes LUTs inside their clusters
and updates the postplacement delay prediction accordingly
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A Greedy Approach: Filtering

We apply three filters

First two designed for speed and try to predict
direct connection utilization, neglecting delay

The third filter permutes LUTs inside their clusters
and updates the postplacement delay prediction accordingly

Details about Filters 1 & 2 in the paper

27



The Third Filter (LUT Permutation)

Maximizing direct connection utilization is hard [1]

(1] T. Werth et al., “DAG Mining for Code Compaction”, Springer, 2009
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The Third Filter (LUT Permutation)

Maximizing direct connection utilization is hard [1]

Postplacement critical path delay reduction often requires
improving just a small fraction of connection delays

(1] T. Werth et al., “DAG Mining for Code Compaction”, Springer, 2009
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The Third Filter (LUT Permutation)

Maximizing direct connection utilization is hard [1]

Postplacement critical path delay reduction often requires
improving just a small fraction of connection delays

— extract that fraction and form an ILP
(extract & solve the critical core)

(1] T. Werth et al., “DAG Mining for Code Compaction”, Springer, 2009
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The Third Filter: Core Extraction

1. Core = all edges with a direct
connection between endpoint
clusters

Timing graph 29
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The Third Filter: Core Extraction

Timing graph

. Core = all edges with a direct

connection between endpoint
clusters

. Remove the edge of largest

slack and least centrality

. Crop to nodes on paths

between the core-nodes

. Constrain the periphery
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The Third Filter: Core Extraction

Timing graph

. Core = all edges with a direct

connection between endpoint
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The Third Filter: Core Solving (ILP)

LUT positions:

Vu € Core,p € [O,N]: Xxyp€{0 1}

Timing graph 30



The Third Filter: Core Solving (ILP)

Timing graph

LUT positions:

Vu € Core,p € [O,N]: Xxyp€{0 1}

Edge delays:

V(u,v) € Core, p;, p, € [0, N] :

ta,, = 2_ tup,vp.Xup Xv,p,

30



Experimental Setup




Experimental Setup

k6_N10_mem32K_4onm VTR 7.0 architecture used as underlying
A subset of VTR benchmarks is used
All results medians of 5 placement seeds

Everything routed with delay-targeted routing algorithm [1]

[1] R. Rubin, A. DeHon, “Timing-Driven Pathfinder Pathology and Remediation:
Quantifying and Reducing Delay Noise in VPR-Pathfider”, FPGA'11
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No support for carry chains, fracturable LUTs, and sparse crossbars
(multipliers and memories supported)
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Results




Convergence
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#direct connections # direct connections

Evolution of geomean delay change with addition of direct connections
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The Pattern

p ~ 1% cluster area increase
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The Pattern
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~ 1% cluster area increase

Broadcasting all 14 connections to all 60
crossbar muxes (cluster-cluster case)
would cost a lot more
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The Pattern

Red edges = first four added
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The Pattern
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Red edges = first four added

68% achieved delay improvement for
< 0.3% cluster area increase
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The Pattern
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Red edges = first four added

68% achieved delay improvement for
< 0.3% cluster area increase

Any usage forms a matching in the circuit
— possibly easy mapping
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Two-Stage Search

\ A\

\ AN

First stage: intercluster (global) connections
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Two-Stage Search
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Second stage: intracluster (local) connections
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Convergence: Intracluster
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Postplacement

#local direct connections
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global only

Postrouting

#local direct connections

Local connections added on top of existing global ones
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Convergence: Intracluster
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Not that appealing...

#local direct connections
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Conclusions and Future Work




Complex wire hardening pays off!

Developed an efficient algorithm that finds good patterns to harden
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How much further could we go if we had dedicated CAD tools?
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Thank you for attention
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