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ABSTRACT
Several techniques have been proposed for automatically search-
ing for FPGA switch-blocks which typically show some tangible
advantage over the well-known academic architectures. However,
the resulting switch-blocks usually exhibit high levels of irregular-
ity, in contrast with what can be observed in a typical commercial
architecture. One wonders whether the architectures produced by
such search methods can actually be laid out in an efficient man-
ner while retaining the perceived gains. In this work, we propose
a new switch-block exploration method that enhances a recently
published search algorithm by combining it with ILP, in order to
guarantee that the obtained solution satisfies arbitrary regularity
constraints. We measure the impact of regularity constraints com-
monly seen in industrial architectures (such as limiting the number
of different multiplexer sizes or forced sharing of inputs between
pairs of multiplexers) and observe benefits to the routability of
complex circuits with only a limited reduction in performance.
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1 WHO CARES ABOUT “REGULARITY”?
Figure 1 shows wire adjacency of two switch-blocks: one from a
7-Series FPGA [1] (Figure 1a) and the other a product of automated
exploration attempting to optimize the switch-block for a set of rel-
evant circuits [2] (Figure 1b). Although the matrices are not directly
comparable as their wire sets differ, one thing immediately draws
attention: the commercial switch-block is perfectly “regular”, while
the one resulting from automated exploration is very “irregular” in
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(a) Commercial switch-block.
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(b) Result of automated search.

Figure 1: Regularity of a commercial switch-block contrasted with an irregular
solution obtained through automated search. Figure (a) shows simplified wire
adjacency in a 7-Series Xilinx FPGA [1]. An analogous plot of a switch-block
obtained by automated search [2] is shown in Figure (b). Although wire sets
differ between the two switch-blocks and they can thus not be directly com-
pared, a stark difference in “regularity” is readily observed.

comparison. Could it be that imposing regularity is simply too con-
straining for the switch-block to reach peak performance? Or could
there perhaps be other solutions with comparable performance that
are also regular? Are there any downsides of irregularity, apart
from the evident increase in the already high layout effort needed
to produce an FPGA? If significantly different circuits are imple-
mented on the optimized architecture, will it still outperform the
regular commercial one, or will it become unroutable?

All these are very interesting questions that, to the best of our
knowledge, have not been systematically answered until now. In
fact, most published searchmethods would produce highly irregular
solutions (see Section 2) without much regard to whether they
can be fabricated while retaining the observed performance gains.
In this work, we attempt to correct this. Apart from providing
insight into benefits and downsides of various forms of regularity
that commercial switch-blocks have been observed to possess, we
propose a general algorithm for searching for switch-blocks with
arbitrary forms of regularity. This includes those which may arise
in the future, due to technology and/or CAD algorithm evolution.

The proposed algorithm is introduced in Section 4. It consists of
integrating an Integer Linear Programming (ILP)-based switch-block
construction method with our recent Avalanche Search method [2]
which generates switch-blocks by greedily taking switches that a
negotiation-based router displays the most affinity to. A review
of related work is given in Section 2 and Avalanche Search in
particular in Section 3. Subsequent sections present the use of the
developed algorithm for a thorough investigation of the impact of
various types of switch-block regularity collected primarily from
the available data about real commercial architectures, but also prior
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academic work. Concerns about ILP solution time are addressed in
Section 12, while conclusions are drawn in Section 13.

2 RELATEDWORK
Several methods for automating switch-block exploration have
been proposed [2–4], with simulated annealing forming the basis for
majority of them. Due to randomized search and/or noise generated
by the CAD tools used in the exploration loop, the architectures
they produce tend to be highly irregular.

Nevertheless, such techniques that enable quick architectural
optimization can be highly useful, even if the solutions they pro-
duce may not be easily fabricated in an actual product. A notable
example of this is found in the work of Lemieux et al., which clearly
demonstrated that sparse crossbars can bring large area reductions
without sacrificing routability [5]. While the key idea of sparsify-
ing the crossbar was carried over to Stratix I, for different layout
reasons, the actual implemented pattern was considerably more
regular [6]. This also enabled simple LUT output swapping by the
router without having to reconsider the local routing of the input
signals: an interesting example of the case when constraints im-
posed on the interconnect architecture lead both to an efficient
layout and a possibility to improve CAD efficiency.

When an automated search method is not intended to test a
groundbreaking hypothesis, such as the one in the work of Lemieux
et al., but to further optimize architectures from a known design
space, inability to easily fabricate the solutions may question the
actual utility of the method. Unfortunately, all of the papers cited
at the beginning of this section propose methods that fall in this
second category. In this work, we build on top of the most recent of
them—Avalanche Search [2]—to produce practical switch-blocks.

3 REVIEW OF AVALANCHE SEARCH
The goal of the Avalanche Search algorithm [2] is to select a subset
𝑆𝑂𝐿 of manufacturable switch types 𝐸, which connect wire types
from a fixed set 𝑉 , such that 𝑆𝑂𝐿 is as small as possible but still
allows the router to route all circuits of interest, while meeting
timing constraints. The switch types entering 𝑆𝑂𝐿 constitute a
switch-pattern which is repeated in every FPGA tile, next to every
LUT [7]. Each switch type from 𝐸 is designated by an ordered triplet
(𝑢, 𝑣, 𝑑𝐿), where 𝑢 ∈ 𝑉 is the driving wire type, 𝑣 ∈ 𝑉 the driven
wire type, and 𝑑𝐿 the distance between the end of the driving wire
and the start of the driven wire in terms of the number of LUTs
(see Fig. 1 of Nikolić and Ienne [2]).

The algorithm is outlined in Figure 2. It iteratively builds a switch-
pattern by 1) routing circuits and observing in how many switch-
blocks each switch type was used (usage,𝑈 ((𝑢, 𝑣, 𝑑𝐿)); box 2 ) and
2) increasing the pattern by a certain number of most-used switch
types (box 5 ), until there are no more switch types used by the
router which are not already in the pattern (boxes 3 and 4 ). To
be able to measure usage of switch types that are not yet part of the
pattern, each switch type that could be fabricated is represented in
the routing-resource graph of box 2 . These switch types, however,
are represented with a high initial cost which drops in proportion
to usage, whereas the switch types that are part of the pattern
are assigned zero cost and their usage is no longer measured. As
a result, the set of all switch types used by the router (tentative

solution, 𝑡𝑆𝑂𝐿, in box 3 ) slowly converges to the increasing set of
switch types accepted into the pattern (partial solution, 𝑝𝑆𝑂𝐿).

4 REGULARIZATION ALGORITHM
The algorithm of Figure 2 provides nomechanism for controlling the
structure of the solution. We will now extend it to impose arbitrary
constraints, while retaining tight coupling with the router.

4.1 General Flow
The proposed algorithm is shown in Figure 3. It retains the structure
of the algorithm of Figure 2, with two important modifications. First,
the tentative solution, 𝑡𝑆𝑂𝐿, is not formed by merely observing
which switch types were used by the router. An ILP problem is
constructed instead, such that all of its feasible solutions satisfy all
specified regularity constraints. Maximizing affinity of the router
towards the switch types that enter 𝑡𝑆𝑂𝐿, represented by their
usage, increases the likelihood that the final solution is routable
and appropriate for critical path optimization of the routed circuits.

Second, selection of themost-used switch types from 𝑡𝑆𝑂𝐿which
enter the final pattern in box 5 is identical to that of Figure 2, but
the initial avalanche cost [2] of the remaining switch types in 𝑡𝑆𝑂𝐿
is set to a lower value in the next iteration of the algorithm. The
rationale is as follows: in the first iteration, the router uses switches
unaware of the constraints imposed on the switch-pattern. This may
result in the set of used switch types being very far from meeting
the constraints. The ILP solver legalizes the solution, respecting
the decisions of the router as much as possible by maximizing the
total usage. In the second iteration, those switch types which are
known to be part of at least one legal solution (𝑡𝑆𝑂𝐿) are offered
to the router at a reduced price, making it less likely for the router
to violate the constraints again. Over time, the router and the ILP
solver converge towards a common solution.

In order to guarantee that the algorithm ends, once a switch
type enters the partial solution, 𝑝𝑆𝑂𝐿, it is never removed from
it; this is the same as in Figure 2. Moreover, since 𝑝𝑆𝑂𝐿 is always
extended only by the switch types from 𝑡𝑆𝑂𝐿, produced by the ILP
solver and hence legal by construction, the algorithm is always
guaranteed to end with a solution that satisfies all of the imposed
constraints. It could happen, however, that the final solution does
not encompass all of the switch types that the router used in the
last iteration, because adding them to 𝑡𝑆𝑂𝐿 would make it violate
the constraints. These switch types may either slightly improve the
delay of some (near-)critical paths or be necessary for complete re-
moval of congestion. The second case would result in the constraint
set being deemed unsatisfiable and it would have to be relaxed. We
note, however, that in all experiments performed in preparation of
this paper, we never encountered such a situation.

4.2 Base ILP Problem
In this section, we describe a skeleton ILP problem which completes
the algorithm of Figure 3. Different types of regularity constraints
will be gradually added to it over the subsequent sections.

Given a switch type 𝑒 connecting a wire type 𝑢 to a wire type 𝑣
at a LUT distance 𝑑𝐿 [2], we designate its presence in the switch-
pattern by the following binary variable:

𝑥𝑢,𝑣,𝑑𝐿 ∈ {0, 1}, ∀(𝑢, 𝑣, 𝑑𝐿) ∈ 𝐸. (1)



Figure 2: Avalanche Search algorithm [2].

Figure 3: Search algorithm proposed in this work, which enforces arbitrary regularity constraints on the obtained solution.

The corresponding switch type is part of the switch-pattern iff the
variable is 1. To specify that the accepted switch types must be part
of 𝑡𝑆𝑂𝐿, we simply set the appropriate presence variables to 1:

𝑥𝑢,𝑣,𝑑𝐿 = 1, ∀(𝑢, 𝑣, 𝑑𝐿) ∈ 𝑝𝑆𝑂𝐿. (2)

As mentioned in Section 4.1, the basic objective function strives to
maximize the total usage of the switch types entering the solution:

max
∑︁

(𝑢,𝑣,𝑑𝐿 ) ∈𝐸
𝑈 ((𝑢, 𝑣, 𝑑𝐿))𝑥𝑢,𝑣,𝑑𝐿 . (3)

Usage of each switch type is observed from the router and is thus
a constant in the ILP problem. To prevent selection of all switch
types in absence of further constraints, each ILP imposes an upper
bound𝑀 on switch-pattern size:∑︁

(𝑢,𝑣,𝑑𝐿 ) ∈𝐸
𝑥𝑢,𝑣,𝑑𝐿 ≤ 𝑀. (4)

5 EXPERIMENTAL SETUP
All of the subsequent sections that progressively introduce differ-
ent kinds of regularity constraints share a common experimental
setup adopted from our previous work [2]. Most notably, all experi-
ments are performed on an eight 6-LUT-based architecture with a
fixed channel segmentation containing wires indicated in Figure 1b,
where R, L, U, and D designate wires going right, left, up, and down,
respectively. This segmentation was inspired by that of Agilex [8],
with omission of long wires. It gives an equivalent horizontal chan-
nel width of 8×2× (1+1+2+4+6) = 224 and an equivalent vertical
channel width of 8 × 2 × (1 + 1 + 4) = 96. Switches between wires
in the same plane (starting and ending in the vicinity of one LUT
of the CLB [2, 8]) as well as between adjacent planes are allowed,
while U-turns are prohibited. This leads to 564 switch-types in total.

The only additional parameter introduced in the algorithm of
Section 4 is the cost reduction factor for switch types participating
in the ILP solution (𝑡𝑆𝑂𝐿) that have not yet been accepted into the
partial solution (𝑝𝑆𝑂𝐿). We fix this to 0.9, which was experimentally
determined to yield slightly better results than other tested values.

In order to suppress the effects of experimental noise that could
lead to false conclusions about which trade-offs a certain set of
constraints brings, we need to compare sets of feasible architectures,
rather than single points. To this end, we leverage the well-known
fact that permuting the order in which the nets of a circuit are
routed can have a significant impact on the outcome of the routing
process [9, 10] and hence also on the usage of different switch types.
Permutation is achieved by performing 100 random swaps in the
default-sorted netlist [11]. For each constraint set, we construct five
different architectures, by permuting the netlist using five different
random number generator seeds.

The switch-pattern size is bounded by 96 in all experiments,
which allows finding solutions for all constraint types introduced in
the subsequent sections, yet, does not make the patterns excessively
larger than the ones produced by Avalanche Search [2].

6 LIMITING MULTIPLEXER SIZE VARIATION
The first form of regularity apparent in the industrial architectures
is the very limited number of multiplexer sizes in their switch-
patterns—often only one [1, 12, 13]. The reason for such uniformity
likely lies in the efficiency with which multiplexers of certain sizes
can be laid out [1, 14], but there could also be other reasons such
as increased routability. In this section, we investigate the benefits
and downsides of limiting the number of multiplexer sizes. When
the size of the multiplexer driving each wire 𝑣 is known in advance
to be some constant 𝜑 (𝑣), extending the ILP problem of Section 4.2
to respect this size distribution is trivial:

∑︁
𝑢,𝑑𝐿 :(𝑢,𝑣,𝑑𝐿 ) ∈𝐸

𝑥𝑢,𝑣,𝑑𝐿 = 𝜑 (𝑣), ∀𝑣 ∈ 𝑉 . (5)

However, we would like to measure the impact of limiting the
number of multiplexer sizes in general, without a priori assigning
a size to any particular multiplexer, since this unrelated decision
could influence the conclusions.



6.1 Encoding
Given a maximum allowed size for any multiplexer,𝑀𝜑 , for each
size 𝜑 ∈ [0, 𝑀𝜑 ], and each wire 𝑣 , we introduce another binary
variable 𝑥𝑣,𝜑 , which is 1 iff the size of the fanin of the wire 𝑣 is 𝜑 :∑︁

𝑢,𝑑𝐿 :(𝑢,𝑣,𝑑𝐿 ) ∈𝐸
𝑥𝑢,𝑣,𝑑𝐿 =

∑︁
𝜑∈[0,𝑀𝜑 ]

𝜑𝑥𝑣,𝜑 , ∀𝑣 ∈ 𝑉 , (6)∑︁
𝜑∈[0,𝑀𝜑 ]

𝑥𝑣,𝜑 = 1, ∀𝑣 ∈ 𝑉 . (7)

For each allowed multiplexer size 𝜑 , we introduce another binary
variable, 𝑥𝜑 , indicating that there is at least one wire in the switch-
pattern driven by a multiplexer of that size:

𝑥𝜑 =
∨
𝑣∈𝑉

𝑥𝑣,𝜑 , ∀𝜑 ∈ [0, 𝑀𝜑 ] . (8)

For each𝜑 , the above disjunction is linearized in a standardway [15]:∑︁
𝑣∈𝑉

𝑥𝑣,𝜑 ≥ 𝑥𝜑 , (9)

𝑥𝑣,𝜑 ≤ 𝑥𝜑 , ∀𝑣 ∈ 𝑉 . (10)

Finally, we need to limit the number of different multiplexer sizes
present in the solution to the desired constant 𝑁𝜑 :∑︁

𝜑∈[0,𝑀𝜑 ]
𝑥𝜑 ≤ 𝑁𝜑 . (11)

If distribution of a specific set of sizes, Φ (e.g., Φ = {6, 20, 25} [1]) is
sought, [0, 𝑀𝜑 ] is simply replaced by Φ in the above equations.

6.2 Results
We investigate the difference in performance between architectures
with up to one, two, four, or any number of arbitrary different
multiplexer sizes up to 20:1 (𝑁𝜑 ∈ {1, 2, 4,∞}, 𝑀𝜑 = 20).

Critical Path Delay: Figure 4 shows the critical path delays
when routing MCNC circuits on the obtained architectures. Each
point is a geometric mean of 17 circuits and each circuit is in
turn represented by the median over five different placements [2].
Although there are significant differences between architectures
within each group, we can observe that allowing two rather than a
single multiplexer size provides slightly more stable results, while
increasing the number to four leads to a clearer advantage. Architec-
tures obtained when the number of multiplexer sizes is not bounded
clearly outperform the others, with a close to 3% average critical
path delay reduction over the case when only one size is allowed.
This demonstrates that there is a performance advantage to be
reaped when it is possible to tailor the multiplexer sizes specifically
to the needs of the circuits of interest.

Architectures labeled as “∞, 96 sw.” also do not limit the number
of multiplexer sizes, but instead of considering 𝑀 = 96 an upper
bound on switch-pattern size, they all have exactly 96 switch types.
In comparison, the∞-labeled architectures have 72–86 switch types.
As a result, capacitive loading on wires is increased and the advan-
tage of freely choosing multiplexer sizes is largely lost.

Routability: Only three circuits were used in the search [2],
yet, all 17 circuits on which performance comparisons are based
were routable. Nevertheless, the remaining 14 circuits come from
the same benchmark set, so it is of interest to see how routable the
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Figure 4: Geomean critical path delays after routing the MCNC benchmarks.
Each point represents a single architecture. Average delay among the archi-
tectures within the same constraint set is depicted by an orange horizontal
line. Blue rectangles are used merely for visual separation of architectures
obtained for different constraint sets. Unconstrained architectures (∞) clearly
have a performance advantage.
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Figure 5: Routability on Gnl circuits. Each point represents the total number
of connections that were routed (including rip-ups) when routing a single Gnl
circuit on a particular architecture. Circuits that failed to route are shown in
red. Since for many of the unroutable circuits more connections were rerouted
than can fit in the plot, the number of failed circuits for each architecture
is written at the top. All numbers are single-digit (there were 10 circuits in
total). The plot below shows the average critical path delay on the MCNC
circuits for the particular architecture as a reference (see plot of Figure 4).
While unconstrained architectures were better optimized to achieve good
performance on circuits from the set used to construct them, they struggle to
route significantly more complex circuits. Multiplexer size regularity has a
clear advantage in routability of more complex circuits.

patterns are when routing circuits from a more complex set. To this
end, we attempt routing ten 10 000 LUT circuits with a Rent’s expo-
nent of 0.7, generated by Gnl [2, 16]. Results of these experiments
are shown in Figure 5. Since modern routers, including VTR-8, are
incremental [11], we plot the total number of routed connections
taken to complete the routing of each circuit on each architecture,
as we believe that this is a more telling metric of the difficulty which
the router faces than the more common iteration count. Geomet-
ric means of the iteration count and the wirelength of all circuits,



Table 1: Generalization.

𝑁𝜑 delay [ns] # iter. # routed con. [103] WL [103]
exploration circuits

1 1.143 29 15.82 6.35
2 1.147 29 15.97 6.08
4 1.133 29 14.68 5.86
∞ 1.113 29 16.72 6.01

∞, 96 sw. 1.131 29 16.22 6.00
other MCNC circuits

1 1.510 30 63.02 22.53
2 1.505 30 63.87 21.42
4 1.493 31 61.16 20.83
∞ 1.464 31 66.50 21.48

∞, 96 sw. 1.491 31 68.10 21.50
Gnl circuits

1 26 202.14 235.84
2 30 204.37 234.46
4 42 219.86 247.25
∞ 149 581.91 287.80

∞, 96 sw. 111 343.75 279.13

averaged over all five architectures of the given constraint set are
shown in rows labeled as “#iter.” and “WL”, respectively.

There is little difference in the number of connections that have
to be routed between the architectures which have one or two
multiplexer sizes. However, as soon as 𝑁𝜑 increases to four, there is
a very clear drop in routability, with one architecture even failing to
route all circuits. This trend further increases when the number of
multiplexer sizes is unbounded, regardless of the switch-pattern size
constraint: in both cases, three of the five unbounded architectures
fail to complete some of the circuits within 300 iterations.

Table 1 shows the average routability metrics of architectures
obtained for different constraint sets on circuits split into three
groups: 1) those used in exploration, 2) the remaining circuits from
the MCNC set, and 3) the more complex circuits from the Gnl set.
Failed circuits enter the geometric average for a given architecture
with 300 iterations, which was the limit used in the experiments.
We can observe that the highly delay-optimized architectures with
no constraint on multiplexer size count are somewhat less routable
(albeit with a competitive wirelength) even on the circuits used
for exploration. This trend is maintained on the remaining MCNC
circuits, while the advantage of the regular architectures becomes
really significant on the larger Gnl circuits. It seems quite clear that
having uniformmultiplexer sizes makes it muchmore likely that the
architecture will support circuits with characteristics not captured
by those used during the search. This is certainly an important
aspect for FPGA vendors, and it is likely better to give up some of
the potential performance benefits that a less regular architecture
could bring, in order to make it significantly more general.

7 LIMITING FANOUT SIZE VARIATION
In the previous section, the number of different multiplexer sizes
that occur in the switch-pattern was bounded, but there were no
constraints on the fanout size variation. However, large variations
in fanout size may make it more difficult to optimize the critical
path delay, due to differences in capacitive loads on wires, unless
the router is able to effectively exploit them [8]. In this section, we
assess the effect of constraining fanout and multiplexer size count
together. Constraints that are needed for this are dual to the ones
of Section 6.1, with edges being listed with respect to the tail node.
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Figure 6: Influence of bounding the number of different multiplexer and
fanout sizes on the critical path delay of the implemented MCNC circuits.
Regularizing fanout sizes balances capacitive loads and reduces the negative
impact of multiplexer size regularization on delay.
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Figure 7: Influence of bounding the number of different multiplexer and
fanout sizes on routability. Regularizing fanout sizes further improves it.

7.1 Results
All experiments are set up exactly as in Section 6. We bound the
number of multiplexer and fanout sizes by the same constant.

Critical Path Delay: Influence of regularizing fanout sizes on
critical path delay of the routed circuits is shown in Figure 6. More
balanced capacitive loads and more options that the router has to
avoid congestion bottlenecks leads to improved results when the
number of multiplexer sizes is very limited (𝑁𝜑 ∈ {1, 2}). However,
this improvement is still not sufficient to make the regularized
architectures outperform the unconstrained ones, where the router
can freely select the switch types that form the pattern.

Routability: Influence that regularizing fanout sizes has on
routability is shown in Figure 7. When compared with Figure 5, we
can see that regularization of fanout sizes contributes to additional
improvement of routability. This is the most apparent when the
number of sizes is bounded by four, where now all architectures
manage to route all circuits, but it also brings improvement to the
architectures with completely uniform fanins. Balancing the fanout



Table 2: Average total wire delay with respect to the number of inputs shared.

# inputs shared 0 1 2 3 4 5
t [ps] 223.2 221.6 220.6 220.4 220.4 218.6
Δ [%] 0.00 −0.72 −1.16 −1.25 −1.25 −2.06

sizes likely helps because it removes the situation when certain
wires with a comparatively large fanout get too congested as others
do not provide enough possibilities to complete the needed paths.

8 MULTIPLEXER INPUT SHARING
Certain commercial FPGAs employ switch-patterns where pairs of
multiplexers share a large fraction of inputs. For example, Young
showed that forming a pair of two 6:1 multiplexers that share 5/6 in-
puts allows for significant area gains due to diffusion sharing [1, 14].
Similarly, Chromczak et al. state that “adjacent muxes aggressively
share input pins” to reduce vias in Intel Agilex FPGAs [8]. In this
section, we measure the impact of this design approach.

8.1 Encoding
To begin encoding the constraints that will force the multiplexers
to form pairs which share the required number of inputs, we first
track the number of inputs shared by each pair of wires, 𝑣1 and 𝑣2

𝑆𝑣1,𝑣2 =
∑︁

𝑢,𝑑𝐿 :(∀𝑣∈{𝑣1,𝑣2 }) ( (𝑢,𝑣,𝑑𝐿 ) ∈𝐸 )
𝑥𝑢,𝑣1,𝑑𝐿 ∧ 𝑥𝑢,𝑣2,𝑑𝐿 , ∀𝑣1, 𝑣2 ∈ 𝑉 ,

(12)
where 𝑆𝑣1,𝑣2 is an additional variable that counts the number of
inputs shared between the wires 𝑣1 and 𝑣2. To linearize the con-
junction, we need to introduce another binary variable 𝑥𝑢,𝑣1,𝑣2,𝑑𝐿
for each pair of wires 𝑣1 and 𝑣2 and each input switch that they
could share (each addend of the above sum). The conjunction is
then linearlized in a standard way by the following constraints [15]:

𝑥𝑢,𝑣1,𝑣2,𝑑𝐿 ≥ 𝑥𝑢,𝑣1,𝑑𝐿 + 𝑥𝑢,𝑣2,𝑑𝐿 − 1, (13)
𝑥𝑢,𝑣1,𝑣2,𝑑𝐿 ≤ 𝑥𝑢,𝑣,𝑑𝐿 , ∀𝑣 ∈ {𝑣1, 𝑣2} (14)

Next, for each pair of wires 𝑣1 and 𝑣2, we introduce a binary
variable 𝐹𝑣1,𝑣2 which, when 1, will force 𝑣1 and 𝑣2 to share at least
𝜉 inputs, where 𝜉 is the specified constant:

𝜉𝐹𝑣1,𝑣2 ≤ 𝑆𝑣1,𝑣2 , ∀𝑣1, 𝑣2 ∈ 𝑉 . (15)

Finally, we need to partition the wires into pairs, by specifying that
each wire is forced into exactly one pair:∑︁

𝑣2∈𝑉
𝐹𝑣1,𝑣2 = 1, ∀𝑣1 ∈ 𝑉 . (16)

8.2 Results
In these experiments, we force all multiplexers to take six inputs
from other wires and sweep the minimum sharing bound 𝜉 between
0 and 5. Since there are 16 wires in the switch-pattern, the total
number of switches is exactly 96 and the multiplexer and fanout
sizes correspond to the uniform case (𝑁𝜑 = 1) of Section 7. The
multiplexers are not exactly 6:1 like those of Young [14], since each
takes two additional inputs from the LUTs.

Critical Path Delay: Influence of input sharing between pairs
of multiplexers on critical path delay of routed circuits is shown in
Figure 8. No significant critical path delay increase is apparent. In
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Figure 8: Influence of sharing inputs between pairs of multiplexers on critical
path delay. Input sharing shows no significant negative impact on critical path
delay; it even slightly improves it in some cases.
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Figure 9: Influence of sharing inputs between pairs ofmultiplexers on routabil-
ity. Input sharing shows no negative impact on routability.

fact, there even appear to be some gains from applying these con-
straints, likely because wiring load is reduced. This can be observed
in Table 2 which contains average total wire delays for architectures
with different amounts of input sharing. It is important to note that
the models which we use [17] are not capable of accounting for area
reduction obtained through diffusion sharing, nor for the reduced
via use, which were the primary reasons for input sharing stated by
Young [14] and Chromczak et al. [8]. Since input sharing appears
to make no negative impact on the routed critical path delays, even
with the conservative models that only take into account reduction
in length of wires feeding multiplexer inputs, we hypothesize that
FPGA vendors are reaping significant gains from this technique
when its impact on layout is fully taken into account.

Routability: One could expect that sharing majority of inputs
between pairs of multiplexers may cause a drop in routability. How-
ever, the results of Figure 9 show that this is not the case. Combining
this observation with the expected performance gains, area reduc-
tion, and easier layout that were previously discussed, we conclude
that input sharing is likely a very effective optimization technique.



9 MINIMIZINGWIRELENGTH
So far, we have only used total switch type usage as the ILP problem
objective. However, it may happen that some of the switch types
are added to the switch-pattern solely to make it regular and that
they otherwise have very low and even zero usage. In fact, in the
experiments presented in this work, due to small size of the circuits
on which the search is conducted, it was not uncommon to observe
> 20 of the 96 switch types entering the pattern exclusively for
regularization reasons. In such cases, it seems reasonable to have a
complementary objective to guide regularization. A good candidate
for this is minimizing the total length of the wires providing inputs
to the multiplexers in the switch-block. In this section, we describe
how that objective can be modeled and what impact it has on
performance and routability of the obtained solutions.

9.1 Encoding: Modeling Wirelength
Without loss of generality, we assume that all multiplexers are of
the same size and that their physical width and height are 𝛼 and
𝛽 , respectively. For the solving approach discussed shortly, which
formulates and solves multiple ILP problems with fixed multiplexer
placement, relaxing this constraint is trivial. Same-size multiplexers
form a uniform grid of 𝑛 columns and𝑚 rows. We represent the
placement of the different multiplexers in a similar way as Mihal
and Teig [18]. For each wire 𝑣 ∈ 𝑉 , and each location on the uniform
grid (𝑥,𝑦), a binary variable 𝑥𝑣,(𝑥,𝑦) indicates that the multiplexer
driving 𝑣 is placed at location (𝑥,𝑦). The following constraints make
sure that each multiplexer is assigned a unique location:∑︁

𝑥,𝑦

𝑥𝑣,(𝑥,𝑦) = 1, ∀𝑣 ∈ 𝑉 . (17)

Overlaps between multiplexers are removed as follows:∑︁
𝑣∈𝑉

𝑥𝑣,(𝑥,𝑦) ≤ 1, ∀(𝑥,𝑦). (18)

We describe the total wirelength as the sum of Manhattan lengths
of individual switch types:∑︁
(𝑢,𝑣,𝑑𝐿 ) ∈𝐸
𝑥 ′,𝑥”∈[0,𝑛)
𝑦′,𝑦”∈[0,𝑚)

𝜆(𝑥 ′, 𝑦′, 𝑥”, 𝑦”, 𝑑𝐿) (𝑥𝑢,𝑣,𝑑𝐿 ∧ 𝑥𝑢,(𝑥 ′,𝑦′ ) ∧ 𝑥𝑣,(𝑥”,𝑦”) ), (19)

where 𝜆(𝑥 ′, 𝑦′, 𝑥”, 𝑦”, 𝑑𝐿) is a precomputed constant Manhattan dis-
tance between locations (𝑥 ′, 𝑥”) and (𝑦′, 𝑦”). The conjunction is
linearized as in Section 8.1. To reduce solution time, instead of al-
lowing the ILP solver to assign the locations of the multiplexers,
we fix them a priori, then solve the simpler ILP problems and reit-
erate the process several times (five in the experiments presented
here), optimizing the placement between iterations using simulated
annealing. During placement optimization, switch type selection
is considered fixed, as determined by the ILP solution. We use the
annealing schedule of Betz et al. [19]. Tighter formulations of multi-
plexer placement—essentially a Quadratic Assignment Problem with
Manhattan distance—is possible [20, 21] and could potentially allow
the ILP solver to simultaneously select switch types and place mul-
tiplexers. However, this exceeds the scope of the present work. We
note that multiplexer position optimization is performed in every
iteration of the algorithm of Figure 3, prior to SPICE simulations [2].
Additional optimization performed here is only intended to allow

the ILP solver to form better decisions with respect to wirelength
minimization and does not constitute an advantage in its own right.

9.2 Encoding: Combined Objective
To combine wirelength minimization with usage maximization, we
adapt the auto-normalizing function of Marquardt et al. [22]:

min
(
Λ

total WL
previous total WL

− (1 − Λ) total U
previuos total U

)
. (20)

Objectives total WL and total U are determined by equations (19)
and (3), respectively, while previous total WL and previous total U
designate the total wirelength and usage of the ILP solution from the
previous iteration. Before solving the first ILP problem, a greedy
solution is formed by selecting the 𝑀 (upper bound on switch-
pattern size, see Section 4.2) most used switch types, from which
the initial previous total WL and previous total U are determined.
Constant Λ sets the wirelength trade-off.

9.3 Results
In this section we present the results of experiments where all wires
were constrained to have the same fanout (six, disregarding the
connection block) and the same fanin (six, disregarding the LUT
drivers). No other constraints were imposed and the wirelength
trade-off constant, Λ, was swept from 0 (wirelength completely
disregarded) to 1 (usage completely disregarded).

Critical Path Delay: Figure 10 shows the impact of minimizing
wirelength on critical path delay of the implemented circuits. We
see by comparing the edge cases (Λ = 0 and Λ = 1) that when
the multiplexers are reasonably large and fanouts and fanins are
uniform, which helps eliminate any pathological solutions, opti-
mizing wirelength is about as important as respecting the affinity
of the router towards certain switch types. The best results arise
when both objectives are combined, however. The exact value of
the trade-off constant Λ does not seem to matter too much, but the
plot suggests that setting it to 0.5 yields the best results.

Routability: Figure 11 indicates that taking wirelength into
account also slightly improves routability. One hypothesis why
that is so is that better distribution of capacitive loads alters the
base costs of routing resources assigned by VPR [11], leading to
reduced congestion. Since the differences are not as obvious as with
delays, we did not attempt to put this hypothesis to test yet.

10 ENFORCING TURNS AND SYMMETRIES
So far, all the constraints that we have presented were motivated
by layout considerations. In this section we investigate several
other constraint types that should not directly impact the ease
with which the switch-blocks can be laid out on silicon, but they do
reflect features commonly observed in both industrial and academic
architectures and may impact performance of the CAD tools.

10.1 Encoding: Turns
The first set of constraints is inspired by the assumption that has
been very popular among the academic architectures since it was
first formulated by Rose and Brown [23]: namely, that each wire
should fan out to one wire on each of the tree remaining sides of
the switch-block; the two that are perpendicular to where the wire
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Figure 10: Influence of wirelength optimization on critical path delay of im-
plemented circuits. Λ = 0 only maximizes usage, while Λ = 1 only minimizes
wirelength. Joint optimization of both objectives leads to the best results.
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Figure 11: Influence of wirelength optimization on routability. Joint optimiza-
tion of wirelength and usage also leads to a slight increase in routability.

came from and the one that is directly opposite of it. We generalize
this constraint to allow for larger multiplexers and larger fanouts,
by turning the exactly one requirement to at least one requirement:∑︁

𝑣,𝑑𝐿 :(𝑢,𝑣,𝑑𝐿 ) ∈𝐸∧𝐷𝐼𝑅 (𝑣)=𝑓𝐿 (𝐷𝐼𝑅 (𝑢 ) )
𝑥𝑢,𝑣,𝑑𝐿 ≥ 1, ∀𝑢 ∈ 𝑉 , (21)∑︁

𝑣,𝑑𝐿 :(𝑢,𝑣,𝑑𝐿 ) ∈𝐸∧𝐷𝐼𝑅 (𝑣)=𝑓𝑅 (𝐷𝐼𝑅 (𝑢 ) )
𝑥𝑢,𝑣,𝑑𝐿 ≥ 1, ∀𝑢 ∈ 𝑉 , (22)∑︁

𝑣,𝑑𝐿 :(𝑢,𝑣,𝑑𝐿 ) ∈𝐸∧𝐷𝐼𝑅 (𝑣)=𝐷𝐼𝑅 (𝑢 )
𝑥𝑢,𝑣,𝑑𝐿 ≥ 1, ∀𝑢 ∈ 𝑉 , (23)

𝑓𝐿 =

(
𝑅 𝐿 𝑈 𝐷

𝑈 𝐷 𝐿 𝑅

)
, 𝑓𝑅 =

(
𝑅 𝐿 𝑈 𝐷

𝐷 𝑈 𝑅 𝐿

)
. (24)

Equations (21), (22), and (23) specify that each wire must turn
left, turn right, and continue in the same direction, respectively.
Function 𝐷𝐼𝑅(𝑣) returns the direction of wire 𝑣 , while functions 𝑓𝐿
and 𝑓𝑅 describe the mappings between directions that constitute
left and right turns, respectively.
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(a) Internal fanout symmetry.
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(b) External fanout symmetry.

Figure 12: Fanout symmetry illustration. Fanouts of the H2Ra and H2La wires
(red) are shown for two different patterns. (a) Each of thewires has a symmetric
fanout: there is a mirror symmetry between the vertical wires in the fanout,
but the fanouts of the two wires are not mutually symmetric. (b) The two wires
have mutually symmetric fanouts: the set of vertical wires they fanout to is
identical, while there is mirror symmetry between the horizontal wires in the
fanout. However, neither of them has an internally symmetric fanout.

10.2 Encoding: Fanout Symmetries
The second set of constraints forces wire fanouts to be symmetric.
There are two kinds of symmetry that we explore. The first one
which we call internal symmetry, illustrated in Figure 12a, specifies
that whenever a wire 𝑢 drives a wire 𝑣 perpendicular to it, it must
also drive a wire 𝑣 ′ going in the opposite direction from 𝑣 . We call
the second kind external symmetry and it is illustrated in Figure 12b.
It specifies that two wires which differ only in direction, such that
they are opposing, must have identical sets of perpendicular wires
to which they fan out and that the sets of parallel wires they fan out
to must differ only in direction (i.e., the directions of the respective
wires must be opposing). Both internal and external symmetry are
trivially encoded by equating the switch-type-presence variables
of symmetric pairs of switch types (e.g., 𝑥𝐻2𝐿𝑎,𝑉 1𝑈𝑎 = 𝑥𝐻2𝐿𝑎,𝑉 1𝐷𝑎

in Figure 12a or 𝑥𝐻2𝐿𝑎,𝑉 1𝑈𝑎 = 𝑥𝐻2𝑅𝑎,𝑉 1𝑈𝑎 in Figure 12b). In the
interest of space, we do not present them here in their general form.

10.3 Results
All experiments in this section were conducted using an objective
that combines usage maximization and wirelength minimization
with a trade-off of 0.5, since this was previously shown to yield
the best results. Fanins and fanouts of all wires were fixed at 6
(disregarding LUT-related ones) and no additional constraints were
applied other than the ones indicated in the respective plot.

Critical Path Delay: As shown by Figure 13, enforcing any of
the constraints from this section brings no benefit to the critical
path delay and even slightly deteriorates it.

Routability: Figure 14 shows that most constraints do not bring
a tangible improvement of routability either. Hence, we conclude
that there is no benefit in explicitly enforcing them, unless maybe
when CAD tools specifically assume that they are satisfied.
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Figure 13: Influence of enforcing different topological features on delay. En-
forcing any of these features leads to a deterioration in performance.
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Figure 14: Influence of enforcing different topological features on routability.
Enforcing most of the considered features brings little change.

11 ENFORCING HOP-DISTANCE OPTIMALITY
The final set of constraints that we consider is also related solely to
the performance of the CAD tools and was inspired by our previous
observation that performance of the switch-patternmight be related
to the lower bound on the number of hops needed to connect any
two locations on the FPGA grid [2]. It could be tempting to search
for only those solutions for which this lower bound is the same as
if all switch types were present in the pattern.

11.1 Encoding: Proof Grid
We start by computing the length of the shortest path from the
center of the FPGA grid to all locations that are at most 12 tiles away
from it horizontally, and at most 8 tiles away from it vertically, when
all switch types are present in the switch-pattern. The dimensions
are dictated by twice the length of the longest horizontal (𝑀𝐻 ) and
vertical (𝑀𝑉 ) wires, respectively (Figure 1b). Without attempting a
formal proof, we assume that proving that the same shortest path
lengths are attainable by a pattern 𝑆𝑂𝐿 on this grid suffices to prove
that they are attainable by it on an infinite grid, which would render

it hop-distance optimal. We experimentally confirmed hop-distance
optimality of all solutions on a 100 × 100 grid.

11.2 Encoding: Shortest Paths
For the switch-pattern to be optimal, for each offset (𝑥𝛿 , 𝑦𝛿 ), the
length of the shortest path connecting the tiles at this offset must
equal the value precomputed above, 𝐿(𝑥𝛿 , 𝑦𝛿 ). Hence, we need to
encode an existence of a path of length 𝐿(𝑥𝛿 , 𝑦𝛿 ) such that the sum
of offsets of all horizontal (vertical) wires on it equals 𝑥𝛿 (𝑦𝛿 ). We do
this similarly to how Hamiltonian Path can be encoded in SAT [24]:
for each position on the path, 𝑝 ∈ [1, 𝐿(𝑥𝛿 , 𝑦𝛿 )], and each wire 𝑣 ,
a binary variable 𝑥 (𝑥𝛿 ,𝑦𝛿 ),𝑝,𝑣 is 1 iff 𝑣 is the 𝑝th node on the path.
Each position on the path must be occupied by exactly one wire:∑︁

𝑣∈𝑉
𝑥 (𝑥𝛿 ,𝑦𝛿 ),𝑝,𝑣 = 1, ∀𝑝 ∈ [1, 𝐿(𝑥𝛿 , 𝑦𝛿 )] . (25)

For two wires to be on consecutive positions in the path, there
needs to be a switch between them:

𝑥 (𝑥𝛿 ,𝑦𝛿 ),𝑝,𝑢 ∧ 𝑥 (𝑥𝛿 ,𝑦𝛿 ),𝑝+1,𝑣 ≤
∑︁
𝑑𝐿

𝑥𝑢,𝑣,𝑑𝐿 ,

∀𝑝 ∈ [1, 𝐿(𝑥𝛿 , 𝑦𝛿 )),∀𝑢, 𝑣 ∈ 𝑉 .

(26)

It only remains to sum up the horizontal wire offsets along the path
and force them to 𝑥𝛿 (vertical offsets are analogous):∑︁

𝑝∈[1,𝐿 (𝑥𝛿 ,𝑦𝛿 ) ],𝑣∈𝑉
𝜒 (𝑣)𝑥 (𝑥𝛿 ,𝑦𝛿 ),𝑝,𝑣 = 𝑥𝛿 , (27)

where 𝜒 (𝑣) is the horizontal offset of the wire 𝑣 . To speed up the
solution process, we add some additional constraints. Most impor-
tantly, if the number of shortest paths for a particular offset in the
presence of all switch types is less than 100, we enumerate all of
them and assign each another binary variable. Sum of all these
path variables for the given offset is set to equal 1, which forces the
solver to select exactly one of the paths. Then, the corresponding
𝑥 (𝑥𝛿 ,𝑦𝛿 ),𝑝,𝑣 variables are set by appropriate implication constraints.

11.3 Results
The experimental setup is the same as in Section 10, but because
hop-distance optimality constraints make the problem significantly
more complex and increase the solution time from the order of
seconds to the order of minutes, we decided to set the wirelength
trade-off to 0, thus avoiding the need to solve multiple ILP problems
per iteration, due to multiplexer placement optimization.

Critical Path Delay: Figure 15 indicates that enforcing hop-
distance optimality slightly improves the performance of the ob-
tained architectures, although the difference is rather insignificant.

Routability: Similar conclusions about the impact that hop-
distance optimality has on routability can be drawn from the re-
sults shown in Figure 16. Combining the two results, we conclude
that imposing these constraints is not detrimental; the guaranteed
optimality could perhaps be useful for simplifying the CAD tools.

12 ILP COMPLEXITY
Most of the problem instances that we encountered are solved
within second. A notable exception are the problems which enforce
hop-distance optimality that sometimes take minutes and even
tens of minutes to solve. Comparatively difficult instances also



Table 3: ILP complexity.
variables constraints

reg. type general concrete general concrete avg. sol. t [s]
# fanins (fanouts) (𝑀𝜑 + 1) ( |𝑉 | + 1) 336 (𝑀𝜑 + 1) (|𝑉 | + 1) + 2 |𝑉 | 368 7.18
input sharing 3

2 |𝑉 |3 + |𝑉 |2 3 174 9
2 |𝑉 |3 + |𝑉 |2 + |𝑉 | 9 418 40.66

all turns 0 0 3 |𝑉 | 48 1.32
internal (external) symmetry 0 0 3

2 |𝑉 |2 282 2.68
full symmetry 0 0 3|𝑉 |2 564 2.67
hop-distance optimality (4𝑀𝐻 + 1) (4𝑀𝑉 + 1)2(𝑀𝐻 +𝑀𝑉 ) |𝑉 | 92 469 (4𝑀𝐻 + 1) (4𝑀𝑉 + 1) (2(𝑀𝐻 +𝑀𝑉 ) |𝑉 |2 + 1) 358 846 161.40
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Figure 15: Influence of hop-distance optimality on critical path delay.
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Figure 16: Influence of hop-distance optimality on routability.

occur when sharing of a large number of inputs is enforced, where
solution times sometime also reach minutes.

In Table 3, we give average solution times as well as the number
of variables and constraints needed to encode various types of regu-
larity introduced in previous sections. All of the formulas are upper
bounds. Given that modern architectures, faced with numerous
technological limitations, have highly repetitive interconnect (e.g.,
planes and lanes in Agilex [8]), the number of multiplexers that
need to participate in the ILP problems is unlikely to ever become
very large. Thus, we expect the proposed method to be scalable
even for regularity types for which the encoding size increases
cubically with multiplexer count. Moreover, ILP problem size does

not depend on the size of the circuits used in the exploration, unlike
avalanche routing, which is at present the runtime bottleneck of
the exploration algorithm [2].

13 REGULARITY MATTERS
We have shown that various types of regularity observed in the
switch-blocks of commercial FPGAs do not pose a significant lim-
itation on their performance. In particular, the best-performing
architecture where all wires are forced to have the same fanout and
fanin size (Λ = 0.5 in Figure 10) has only about 1.5% worse routed
critical path delay than the best architecture constructed when the
router is free to choose switch types according to its needs (“∞” in
Figure 4). On the other hand, regularity in fanout and fanin sizes
greatly increases the routability of the architectures on circuits that
significantly differ from the ones used in switch-pattern construc-
tion (Figure 7). This is certainly important for FPGA vendors, given
the long lifetime of the products and difficulties in predicting how
much the target designs will change over that period.

Regularity of the switch-pattern may allow layout optimizations
that are not captured by the existing academic area and delay mod-
els. Hence, the measured loss of performance due to regularization
could be even smaller in a commercial setting. For example, we
demonstrated that sharing inputs between pairs of multiplexers
does not have any negative impact on routability (Figure 9) and that
it even provides a slight advantage in terms of performance when
measured using conservative academic models (Figure 8). On the
other hand, several authors have mentioned other reasons why this
technique can be beneficial [8, 14], which, when combined with the
above result, may more than suffice for the FPGA architect to seek
only switch-patterns where all multiplexers share some inputs.

Perhapsmost importantly, we have demonstrated that automated
exploration methods can be used to construct competitive switch-
block architectures that respect arbitrary constraints, ranging from
fairly simple ones motivated by layout considerations, such as
those presented in Section 6, to fairly complex ones motivated by
design ideas thatmay enablemore efficient FPGACAD, presented in
Section 11. Given that the algorithm which we proposed is generic,
our hope is that it will be useful for both industry and academia in
addressing the challenges that designing future FPGAs may bring.

The source code used in this work is available at the following
link: https://github.com/EPFL-LAP/fpga23-regularity.
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